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1. INTRODUCTION

Strong associations between observed
climate anomalies at lags of one season to years
in advance and normalized area burned in the
western U.S. wildfire season have recently been
described using a newly compiled comprehensive
gridded western regional fire history (Westerling et
al 2001b). Earlier studies of fire scar
dendrochronologies and local fire histories have
demonstrated that large-scale climate patterns are
linked to the severity of the wildfire season in
various regions of the U.S. at similar lead times
(Simard et al.1985, Swetnam and Betancourt
1990, Balling et al 1992, Swetnam and Betancourt
1998, Jones et al. 1999).  These relationships and
the availability of a comprehensive western wildfire
history motivate this experimental statistical
forecast methodology for the western wildfire
season.

Previous work (Westerling et al 2001a &
b) has established that lags of the Palmer Drought
Severity Index can be used to forecast normalized
acres burned at lead times of a season to years in
advance, using co-located PDSI values as
regressors.  This work has also shown that
regional indices describing modes of variability in
PDSI—represented by leading principal
components (PCs) of lagged PDSI values—show
similar skill in forecasting western wildfire season
severity.  Moreover, models based on these
regional indices show impressive predictive skill
even in locations where strong associations
between local PDSI values and normalized acres
burned are lacking.

Canonical Correlation Analysis (CCA)
offers a method for constructing western wildfire
season severity models whose prediction skill
derives from spatial and temporal patterns in
climate spanning the western U.S. In this example
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the authors estimate a forecast model using a
CCA to calculate linear relationships between
principal components of seasonal acres burned on
a 1x1 degree lat-lon grid and principal components
of lagged U.S. Climatological Division PDSI values
(similar to the methodology in Gershunov et al
2000).  Jack-knife cross-validation is used to
estimate robust measures of forecast skill for a
range of choices for the number of principal
components and canonical correlations
incorporated in the model.  A Skill Optimization
Surface (SOS) is used to select a parsimonious
model maximizing forecast skill over the entire
region.

2. DATA

The fire history used here is composed of
seasonal log10 acres burned on a 1 x 1 degree grid
extending from 31°N to 49°N latitude and from
101°W to 125°W longitude for 1980 through 2000.
These data were compiled from 300000 quality-
controlled fire reports of the Bureau of Land
Management (BLM), U.S. Forest Service (USFS),
National Park Service (NPS) and Bureau of Indian
Affairs (BIA).  The log10 transformation was used
to normalize the data.  Only the 330 grid cells
averaging at least one fire per fire season are
included in the analysis.

For predictors, 110 western U.S. Climate
Division PDSI series are used at five different lags:
March and December immediately preceding the
fire season, August and March one year previous
to, and August two years prior to the fire season,
for a total of 550 predictor variables (cf. Westerling
et al 2001a).

3. METHODS

Since a CCA cannot yield a unique
solution if the number of predictor or predictand
variables is greater than the number of
observations, the dimensions of the predictor and
predictand data sets were reduced by substituting
their principle components (PCs) for each of the
two data sets.  (For a detailed CCA methodology
see Barnett and Preisendorfer 1987, Johnson and
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Wichern 1998, Gershunov et al 2000).  The first
PC of each data set is the linear combination of all
the variables in the data set which has maximum
variance.  Each subsequent PC is likewise a linear
combination of the original variables with its
variance maximized subject to the constraint that
the PC is independent of each other PC.  Thus,
each PC summarizes an independent mode of
variability in its original data set, and taken
together the PCs summarize all the information
contained in the original data set.  For the
predictor data, the first six principal components
explain over 70% of total variance.  Similarly for
the predictands, the first six principal components
explain more than 80% of total variance.  So,
relatively few PCs are needed to convey most of
the information contained in these data.

We use a CCA to look for patterns in each
of the two PC data sets that are highly correlated
with each other. A linear combination of the
predictor PCs and a linear combination of the
predictand PCs are calculated such that the
correlation between the two is maximized. Each
subsequent pair is similarly calculated to maximize
their correlation subject to the constraint that they
be uncorrelated with the other pairs.  Since these
canonical correlates (CCs) are linear combinations
of PCs, which in turn are linear combinations of
the original data, we can specify a set of CCs to
be our linear forecast model and solve for
standardized log10 acres burned, our predictand,
given the appropriate lagged PDSI values.

To find a parsimonious CCA model using
the specified lags of PDSI, we calculated the Skill
Optimization Surfaces (SOS) shown in Figure 1.
The x-axis denotes the number of PCs contributed
from the predictor and from the predictand data.
The number of each are constrained to be equal
here to render the solution more tractable.  The y-
axis denotes the number of CCs included in the
model.  Note the triangular shape of the shaded
area—the maximum number of CCs is limited to
the number of PCs included.  Thus, in the lower
left corner we use only the first principal
component, which explains the largest share of
variance, from both the predictors and
predictands, and as a result are constrained to
estimating our model from only the first CC pair.
As we move to the right, adding PCs in order of
their share of the total variance of their data sets
explained, we can choose to move up the y-axis,
adding additional CC pairs in our model in order of
strength of correlation.

Sum of Squared Positive Correlations

Percent of Grid Cells Significant

Sum of Correlations

Figure 1:  Skill optimization surfaces showing
model skill calculated for the entire western U.S.
together (330 grid points) using 3 different
metrics comparing cross-validated forecast and
observed transformed acres burned: top: sum of
the squared positive correlations, midd le :
percentage of grid cells with significant
correlations, and bottom: sum of correlations.
Each skill optimization surface shows skill
calculated for a cross-validated series of models
with the indicated dimensions—the number of
principal components is on the x-axis, the
number of canonical correlations is on the y-axis.
Darker shading indicates higher skill.



Westerling, A. L., A. Gershunov, D. R. Cayan, 2001: "Statistical Forecasts of Western Wildfire Season Severity,"
Proceedings of the 4th Symposium on Fire and Forest Meteorology, Reno, Nevada, November 2001, pp 202-205.

The shading in each SOS denotes the
over-all skill of the forecast, calculated here using
three different metrics.  The first (Figure 1, top) is
the sum of squared positive correlations between
the cross-validated series of model estimates and
the observed predictand for all 330 grid cells with
one or more fires per year on average.  Negative
correlations indicate no skill and were excluded.
This metric gives more weight to models with a
small percentage of grid cells with high forecast
skill.  In the second metric, the percentage of grid
cells with correlations within the 95% confidence
interval of the t-distribution are included. This
metric tends to favor models with moderate skill
over a wide area over those with high skill in a few
grid cells.  Finally, in the third metric, the sum of
correlations is used.  Negative, correlations,
indicating no skill, are more costly in this metric
than in the others. Note that in each case, the
model dimensions showing the greatest skill—six
canonical correlations composed of seven
principal components—are the same for this
example.

To avoid an inflated estimate of the skill
achieved in this exercise, model diagnostics here
are all for results using jack-knifed cross-
validation. That is, for each time step of the model,
a forecast is made using model coefficients
estimated on the subset of the data excluding that
time step. This removes the potential for false
statistical skill in the diagnostic measures reported
here using Pearson’s correlations. In the context
of our CCA models, jack-knife cross-validation
requires not only that at each time-step the
coefficients of our forecast model be estimated on
the subset of the data excluding that time step, but
also that the loadings on the principal components
and canonical correlations be recalculated at each
time-step on that subset as well.  Thus, for each
time-step and number of PCs and CCs we are
calculating a different model.  The SOS does not
help us to select an exact, fixed model, but rather
the dimension or level of complexity of model
which gives the best result. In this example, the
SOS shows a maximum in skill at 7 PCs and 6
CCs, so we further examine the properties of a
cross-validated series of models using these
dimensions.

3. RESULTS

Figure 2 shows the skill, expressed as the
correlation between cross-validated model
estimates and observed transformed acres burned
for a CCA using 7 principal components from the
predictor and predictanddata sets to construct 6

canonical correlations.  The model appears to do
particularly well in the Intermountain West and
parts of the Rockies.  It also shows high skill in the
Southwest along the California-Arizona border and
central Arizona.  It performs rather poorly in
coastal southern and central California, where our
data are sparse.  The eastern-most grid-cells in an
arc up from the Mexico-New Mexico border are
also poorly represented in the fire history data.
The wet Pacific Northwest is better represented in
our data, but shows lower skill in this model.

These results show that useful skill can be
achieved in forecasting fire season severity using
lags of the PDSI. Acres burned aggregated over a
one-degree grid may be too noisy to fully exploit
the potential forecast skill for fire season severity
using climate indices such as the PDSI.
Elsewhere (Westerling et al. 2001a & b) we
achieve better forecast skill for areas such as the
Great Basin and Sierra Nevada by aggregating fire
activity over larger regions with similar vegetation
and climate. In future work will explore a
combination of these approaches, using this CCA
methodology for indices of fire season activity
aggregated over larger areas with common
characteristics.

Figure 2: Model skill represented as correlation
between forecast and observed transformed
acres burned on a 1 x 1 degree grid.  Forecasts
are from a cross-validated series of models using
7 principal components and 6 canonical
correlations. Darker shading represents higher
correlations (skill), while white areas indicate grid
cells with either no skill or no data.
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