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CHAPTER 4

STATISTICAL ANALYSIS OF LARGE WILDFIRES

T.P. Holmes, R.J. Huggett, Jr., and A.L. Westerling

1. INTRODUCTION

Large, infrequent wildfires cause dramatic ecological and economic impacts. 
Consequently, they deserve special attention and analysis. The economic signifi-
cance of large fires is indicated by the fact that approximately 93.8% of fire 
suppression costs on U.S. Forest Service land during the period 1980-2002 resulted 
from a mere 1.4% of the fires (Strategic Issues Panel on Fire Suppression Costs 
2004). Further, the synchrony of large wildfires across broad geographic regions 
has contributed to a budgetary situation in which the cost of fighting wildfires 
has exceeded the Congressional funds appropriated for suppressing them (based 
on a ten-year moving average) during most years since 1990. In turn, this short-
fall has precipitated a disruption of management and research activities within 
federal land management agencies, leading to a call for improved methods for 
estimating fire suppression costs (GAO 2004).
 Understanding the linkages between unusual natural events, their causes and 
economic consequences is of fundamental importance in designing strategies for 
risk management. Standard statistical methods such as least squares regression 
are generally inadequate for analyzing rare events because they focus attention 
on mean values or “typical” events. Because extreme events can lead to sudden 
and massive restructuring of natural ecosystems and the value of economic 
assets, the ability to directly analyze the probability of catastrophic change, as 
well as factors that influence such change, would provide a valuable tool for risk 
managers. 
 The ability to estimate the probability of experiencing a catastrophic event 
becomes more advantageous when the distribution of extreme events has a 
heavy-tail, that is, when unusual events occur more often than generally antici-
pated. Heavy-tail distributions have been used to characterize various types of 
catastrophic, abiotic natural phenomena such as Himalayan avalanches (Noever 
1993), landslides, and earthquakes (Malamud and Turcotte 1999). Several 
studies also indicate that wildfire regimes have heavy-tails (discussed in section 
2 below). For decades, economists have been interested in heavy-tails appearing 
in the distribution of income (Mandelbrot 1960), city sizes (Gabaix 1999, 
Krugman 1996), commodity prices series (eg., Mandelbrot 1963a, Mandelbrot 
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1963b), financial data (eg., Fama 1963, Gabaix et al. 2003), and insurance losses 
(Embrechts et al. 2003). 
 Despite the fact that heavy-tail distributions have been used to characterize 
a variety of natural and economic phenomena, their application has been 
limited due to the fact that heavy-tail distributions are characterized by infinite 
moments (importantly, mean and variance). Reiss and Thomas (2001) define a

distribution function F(x) as having a heavy-tail if the jth moment                         is

equal to infinity for some positive integer j (p. 30). Note that a moment 
is “infinite” if the integral defining the statistical moment is divergent (it 
converges too slowly to be integrated)—therefore, the moment does not exist. 
 Recognizing that standard statistical tools such as the Normal distribution 
and ordinary least squares regression are not reliable when moments are infi-
nite, Mandelbrot (1960, 1963a, 1963b) suggested that the Pareto distribution 
be used to analyze heavy-tail phenomena. The Pareto distribution is extremely 
useful because, in addition to the capacity to model infinite moments, it has an 
invariant statistical property known as stability: the weighted sum of Pareto-
distributed variables yields a Pareto distribution (adjusted for location and 
scale). Other commonly used long-tail distributions, such as the log-normal, 
do not share this stability property. More recently, Mandelbrot (1997) refers to 
distributions with infinite variance as exemplifying a state of randomness he 
calls “wild randomness”. 
 Over the past few decades, special statistical methods, known as “extreme 
value” models, have been developed for analyzing the probability of catastrophic 
events. Extreme value models utilize stable distributions, including the heavy-
tailed Pareto, and have been applied to problems in ecology (Gaines and Denny 
1993; Katz et al. 2005), finance, and insurance (e.g., Reiss and Thomas 1997; 
Embrechts et al. 2003). The goals of this chapter are to: (1) show how extreme 
value methods can be used to link the area burned in large wildfires with a set 
of explanatory variables, and (2) demonstrate how parameters estimated in the 
linkage function can be used to evaluate economic impacts of management inter-
ventions. In doing so, we provide a brief, somewhat technical overview of the 
statistical analysis of extreme events and discuss previous applications of these 
models to wildfire analysis (section 2). A major contribution of this chapter is the 
discussion of how extreme value models can be parameterized to include covari-
ates such as climate or management inputs as explanatory variables (section 3). 
To clarify the presentation, the statistical methods are applied to an empirical 
analysis of nearly a century of fire history in the Sierra Nevada Mountains of 
California (section 4). A summary of the major points, and implications of the 
empirical analysis for risk managers, are discussed (section 5).
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2. HEAVY-TAIL DISTRIBUTIONS AND 
 WILDFIRE REGIMES 

The idea that much can be learned about economic costs and losses from wild-
fires by recognizing the special significance of large fires can be traced to an 
article published by Strauss and colleagues (1989) titled “Do One Percent of 
the Fires Cause 99 Percent of the Damage?” In that study, the authors provided 
a statistical analysis of wildfire data from the western U.S. and Mexico that 
showed the underlying statistical distribution of fire sizes was consistent with 
the heavy-tailed Pareto distribution. Several subsequent studies, spanning a wide 
array of forest types in the U.S. (Malamud et al. 1998; Malamud et al. 2005), 
Italy (Ricotta et al. 1999), Canada (Cumming 2001), China (Song et al. 2001) 
and the Russian Federation (Zhang et al. 2003), also concluded that wildfire 
regimes are consistent with the heavy-tailed Pareto distribution. The Pareto wild-
fire distribution may be truncated (Cumming 2001) or tapered (Schoenberg et al 
2003) to account for the finite size that can be attained by fires within forested 
ecosystems. 
 To fix ideas regarding the nature of the heavy-tailed Pareto distribution and the 
consequence of such a data generation process for the analysis of large wildfires, 
it is necessary to introduce some notation. To begin, a cumulative distribution 
function of the random variable X, denoted by F(x) = P(X ≤ x), is said to be 
heavy-tailed if x ≥ 0 and 

4.1

where    = 1-F(x), referred to as the “tail distribution” (e.g., Sigman 1999) or 
“survivor function” (e.g., Miller, Jr. 1981). Intuitively, equation (4.1) states that 
if X exceeds some large value, then it is equally likely that it will exceed an even 
larger value as well. The Pareto distribution is a standard example of a heavy-
tailed distribution:    (x) = x-α where x ≥ 1 and α > 0. If α < 2, then the distribution 
has infinite variance (the distribution converges so slowly to zero that it cannot be 
integrated), and if α > 1, the distribution has infinite mean. 
 Extreme value models focus attention on the tail of a statistical distribution of 
events rather than imposing a single functional form to hold for the entire distri-
bution. It is important to understand that the family of extreme value statistical 
models does not impose a heavy-tail upon the data. Rather, the extreme value 
parameter estimates indicate whether the data have a light, moderate or heavy-
tailed distribution (Coles 2001). The classical method used in the statistics of 
extremes, known as the Generalized Extreme Value (GEV) method focuses atten-
tion on the statistical behavior of the maximum value attained by some random 
variable during each time period (or “block”):

4.2
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Pareto distribution is a standard example of a heavy-tailed distribution: 
_
F (x) = x-� where 

x � 1 and � > 0.  If � < 2, then the distribution has infinite variance (the distribution 

converges so slowly to zero that it cannot be integrated), and if � > 1, the distribution has 

infinite mean.   

 Extreme value models focus attention on the tail of a statistical distribution of 

events rather than imposing a single functional form to hold for the entire distribution.  It 

is important to understand that the family of extreme value statistical models does not 

impose a heavy-tail upon the data.  Rather, the extreme value parameter estimates 

indicate whether the data have a light, moderate or heavy-tailed distribution (Coles 

2001).  The classical method used in the statistics of extremes, known as the Generalized 

Extreme Value (GEV) method focuses attention on the statistical behavior of the 

maximum value attained by some random variable during each time period (or “block”): 

� �nn XXXM ...,,max ,21�          (4.2) 

where X1,…,Xn is a sequence of independent random variables each having an 

underlying distribution function F.  If n represents the number of wildfire observations 

recorded in a year, then Mn is the largest wildfire recorded that year.  Classical extreme 

value theory shows that there are three types of distributions for Mn (after linear 

renormalization): the Gumbel (intermediate case), Fréchet (heavy-tail) and Weibull 

(truncated at a maximum size) families.  These three families are described by Coles 

(2001).

 Using extreme value theory, Moritz (1997) fitted a GEV distribution using 

wildfire data from two geographic divisions within the Los Padres National Forest in 

southern California.  He found that the percentage of years in which the single largest 
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where X1,…,Xn is a sequence of independent random variables each having an 
underlying distribution function F. If n represents the number of wildfire obser-
vations recorded in a year, then Mn is the largest wildfire recorded that year. 
Classical extreme value theory shows that there are three types of distributions 
for Mn (after linear renormalization): the Gumbel (intermediate case), Fréchet 
(heavy-tail) and Weibull (truncated at a maximum size) families. These three 
families are described by Coles (2001). 
 Using extreme value theory, Moritz (1997) fitted a GEV distribution using 
wildfire data from two geographic divisions within the Los Padres National 
Forest in southern California. He found that the percentage of years in which the 
single largest fire burned more than one-half the annual total was 65% and 81% 
for the two study areas, and that the size distribution of the largest annual wild-
fires between the years 1911 and 1991 was heavy-tailed. This result is important 
because it is consistent with empirical studies showing that the entire range of fire 
sizes is Pareto distributed. Further, based on graphical evidence, he speculated that 
“extreme weather” might create conditions such that large wildfires are “immune 
to suppression” (p. 1260). Thus, a possible linkage between very large wildfires, 
environmental conditions, and fire suppression technology was suggested.
 Although the GEV model provides a theoretical foundation for the analysis 
of extreme events, data use is inefficient in model estimation because only a 
single observation per time period is utilized. A second approach to extreme 
value analysis overcomes this limitation by using observations which exceed a 
high threshold value, often referred to as the “peaks over threshold” method. 
Again let X1, X2, … represent a sequence of independent and identically distrib-
uted random variables with distribution function F, and let u represent some high 
threshold. The stochastic behavior of extreme events above the threshold is given 
by the conditional probability

4.3

which clearly bears a strong resemblance to equation (4.1). It can be shown that, 
by taking the limiting distribution of equation (4.3) as u increases, the distribution 
function converges to a Generalized Pareto distribution Gξσ(y) (Coles 2001):

4.4

where y = x – u. The parameter ξ is called the shape parameter and σ is the 
scaling parameter. When ξ < 0, the distribution has a finite upper endpoint at 
–σ/ξ; when ξ = 0, the distribution is an exponential (light-tail) distribution with 
mean σ; when ξ > 0, the distribution has a heavy-tail (or Fréchet distribution) 
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 where y = x – u.  The parameter � is called the shape parameter and � is the scaling 

parameter.  When � < 0, the distribution has a finite upper endpoint at –�/�; when � = 0, 

the distribution is an exponential (light-tail) distribution with mean �; when � > 0, the 

distribution has a heavy-tail (or Fréchet distribution) with mean �/(1-�), given that � < 1 

(Smith 2003).  If � � 1 the mean of the distribution is infinite, and if � > 1/2 the variance 

is infinite (“wildly random”).   

 Parameters of the Generalized Pareto model were estimated by Alvarado and 

colleagues (1998) for large wildfires between 1961 and 1988 in Alberta, Canada.  Using 

alternative threshold values (200 hectares and the upper one percentile of fire sizes) they 

concluded that the data were Fréchet (heavy-tail) distributed. In fact, the fire data were 

so heavy-tailed that the fitted distributions were found to have both infinite means and 

infinite variances.   

 The various findings reported above - that wildfire size distributions are heavy-

tailed - represent an important statistical regularity.  However, economists are generally 

interested in conditional probabilities, that is, factors that induce non-stationarity in 

statistical distributions (Brock 1999).  In the following section, we describe how 

covariates can be introduced into models of heavy-tailed statistical distributions and 

show how hypotheses about covariates can be tested in a “regression-like” framework.  

These methods provide a powerful tool for researchers to investigate factors that 

influence the generation of large wildfires.

if � = 0 

if � � 0 
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with mean σ/(1-ξ), given that ξ < 1 (Smith 2003). If ξ ≥ 1 the mean of the distri-
bution is infinite, and if ξ > 1/2 the variance is infinite (“wildly random”). 
 Parameters of the Generalized Pareto model were estimated by Alvarado and 
colleagues (1998) for large wildfires between 1961 and 1988 in Alberta, Canada. 
Using alternative threshold values (200 hectares and the upper one percentile of 
fire sizes) they concluded that the data were Fréchet (heavy-tail) distributed. In 
fact, the fire data were so heavy-tailed that the fitted distributions were found to 
have both infinite means and infinite variances. 
 The various findings reported above—that wildfire size distributions are heavy-
tailed—represent an important statistical regularity. However, economists are 
generally interested in conditional probabilities, that is, factors that induce non-
stationarity in statistical distributions (Brock 1999). In the following section, we 
describe how covariates can be introduced into models of heavy-tailed statistical 
distributions and show how hypotheses about covariates can be tested in a “regres-
sion-like” framework. These methods provide a powerful tool for researchers to 
investigate factors that influence the generation of large wildfires. 

3. INCLUDING COVARIATES IN EXTREME VALUE 
 THRESHOLD MODELS

As mentioned above, Generalized Pareto models are more efficient in the use of 
data than classical extreme value models because they permit multiple observa-
tions per observational period, such as fire year. The main challenge in the Gener-
alized Pareto model is the selection of a threshold for data inclusion. Statistical 
theory indicates that the threshold u should be high enough to be considered 
an extreme value, but as u increases less data is available to estimate the distri-
bution parameters. Although rigorous methods for determining the appropriate 
threshold are currently receiving a great deal of research attention, graphical data 
exploration tools are typically used to select an appropriate value for u using a 
plot of the sample mean excess function (Coles 2001). In particular, the threshold 
is chosen where the sample mean excess function (i.e. the sample mean of the 
values that exceed the threshold) becomes a linear function when plotted against 
the threshold value.
 Having determined a threshold value, parameters of the Generalized Pareto 
distribution can be estimated by the method of maximum likelihood. For ξ ≠ 0, 
the likelihood function is

4.5

and the log-likelihood is

4.6
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where m is the number of observations, xi is the size in acres of fire i, and u is the 

threshold fire size in acres.  Note that equation (4.6) can only be maximized when 
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where m is the number of observations, xi is the size in acres of fire i, and u is the 
threshold fire size in acres. Note that equation (4.6) can only be maximized when

                             for all i = 1,…,m. If this is untrue, it is necessary to set

lnL(ξ,σ) = -∞ to assure convergence. For the special case where ξ = 0, the log-
likelihood is

4.7

and the model is a member of the exponential (non-heavy-tailed) family of distri-
butions.
 If the underlying stochastic process is non-stationary, then the simple Gener-
alized Pareto model can be extended to include covariates such as time trends, 
seasonal effects, climate or other forcing variables. Non-stationarity is typically 
expressed in terms of the scale parameter (Smith 2003). For example, to test for 
a time trend, the scale parameter could be expressed as a function of time, where 
the scale parameter for observation i is                         , where t represents time. 
More generally, a vector of covariates can be included in the model by expressing 
the scale parameter as a linear function of the product of a vector of explanatory 
variables and parameters (β) to be estimated:

4.8

where n is the number of covariates included in the model.

 The Generalized Pareto model is asymptotically consistent, efficient, and 
normal if ξ > –0.5 (Coles 2001; Smith 2003), allowing for the derivation of 
standard errors for the parameter estimates using either the bootstrap method or 
the inverse of the observed information matrix (Smith 2003). Having obtained 
estimates of standard errors, hypotheses regarding the statistical significance of 
the covariates can be tested. 
 The statistical model can be used to estimate the expected value (average size) 
of large fires during a fire season given values for the set of covariates and esti-
mates of the parameter vector [β0, …, βn]. In the simplest case, the value for a 
covariate may represent an updated value for a time trend. Or, the value may 
represent the forecasted value of a covariate such as a climate indicator. For 
the Generalized Pareto model, the expected value of an event that exceeds the 
threshold has a simple expression:

4.9
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where n is the number of covariates included in the model. 

The Generalized Pareto model is asymptotically consistent, efficient, and normal 

if 50.���  (Coles 2001; Smith 2003), allowing for the derivation of standard errors for 

the parameter estimates using either the bootstrap method or the inverse of the observed 

information matrix (Smith 2003).  Having obtained estimates of standard errors, 

hypotheses regarding the statistical significance of the covariates can be tested.
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 The statistical model can be used to estimate the expected value (average size) of 

large fires during a fire season given values for the set of covariates and estimates of the 

parameter vector [�0, …, �n].   In the simplest case, the value for a covariate may 

represent an updated value for a time trend.  Or, the value may represent the forecasted 

value of a covariate such as a climate indicator.  For the Generalized Pareto model, the 

expected value of an event that exceeds the threshold has a simple expression: 
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given that � < 1 (recall that if � > 1 the mean is infinite), Y is the amount by which an 

observation exceeds the threshold (Y – � > 0), and Z is a vector of covariates.   In terms of 

wildfire sizes, E(Y) provides an estimate of the expected (or average) size of a large 

wildfire given that a wildfire size has exceeded the threshold value. 

Economic metrics can be calculated using information on the economic values 

associated with the expected area burned.  For example, the expected value of timber at 

risk of loss to a large wildfire could be estimated by multiplying the expected number of 

acres burned in a large wildfire by an average per acre estimate of stumpage value.  

Expected suppression costs associated with large wildfires could be estimated in a similar 

fashion.  Or, if information were available on the non-market economic values of 

resources related to recreation, watersheds or wildlife habitat, then economic estimates of 

non-market values at risk could be computed as well.  If statistically significant 

covariates associated with management interventions are identified that alter the 

production of large wildfires, then the parameter estimates on the covariates can be used 

to estimate the economic benefits of interventions.  An illustration is presented in the 

following empirical example.
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given that ξ < 1 (recall that if ξ > 1 the mean is infinite), Y is the amount by 
which an observation exceeds the threshold (Y – µ > 0), and Z is a vector of 
covariates. In terms of wildfire sizes, E(Y) provides an estimate of the expected 
(or average) size of a large wildfire given that a wildfire size has exceeded the 
threshold value.
 Economic metrics can be calculated using information on the economic values 
associated with the expected area burned. For example, the expected value of 
timber at risk of loss to a large wildfire could be estimated by multiplying the 
expected number of acres burned in a large wildfire by an average per acre esti-
mate of stumpage value. Expected suppression costs associated with large wild-
fires could be estimated in a similar fashion. Or, if information were available on 
the non-market economic values of resources related to recreation, watersheds or 
wildlife habitat, then economic estimates of non-market values at risk could be 
computed as well. If statistically significant covariates associated with manage-
ment interventions are identified that alter the production of large wildfires, then 
the parameter estimates on the covariates can be used to estimate the economic 
benefits of interventions. An illustration is presented in the following empirical 
example.

4. LARGE WILDFIRES IN THE SOUTHERN SIERRA 
 NEVADA MOUNTAINS

The Southern Sierra Nevada Mountains (SSNM) provide a useful case study 
for illustrating the application of extreme value analysis to wildfire modeling. 
Nearly a century of fire data is available for land management units located in 
this region, allowing us to investigate factors influencing wildfire production 
over short, medium and long time scales. The fire data analyzed in this chapter 
come from the Sequoia National Forest (SQF) which sits at the southern exten-
sion of the SSNM and comprises 5,717 km2, or 27%, of the federally managed 
lands in the SSNM (Figure 4.1). The northern and western reaches of SQF have 
the most forest cover, with substantial area at lower elevations in the southwest 
in grassland and in the southeast in chaparral. Giant sequoia groves are a small, 
but important, component of the fire-adapted ecosystems in SQF. 
 Fire history data for SQF were derived from fire perimeter records (Figure 4.2) 
for fires for the years from 1910–2003, obtained from the California Department 
of Forestry Fire and Resource Assessment Program. A histogram of the fire size 
distribution for SQF (Figure 4.3) clearly shows that the distribution is not normal 
or log-normal, is highly skewed, and has a long right-hand-side tail (note that 
fire sizes above 10,000 acres have been combined for graphical convenience). 
At a first approximation, the distribution of fire sizes for SQF appears as though 
it may be Pareto distributed (heavy-tailed) or, perhaps, distributed as a nega-
tive exponential (light-tailed). Fortunately, statistical methods can be used to test 
whether the distribution is light- or heavy-tailed (Reiss and Thomas 2001). 
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Figure 4.1: Location of Sequoia National Forest (SQF, black) in relation to other Federal 
Forest and Park land in the Southern Sierra Nevada Mountains (grey) and California 
Climate Division number 7 (CA07, light blue). 

Figure 4.2: Map showing areas burned since 1910 (shaded) and Sequoia National Forest 
boundary.

Figure 4.1.  Location of Sequoia National Forest (SQF, 
black) in relation to other Federal Forest and Park land in 
the Southern Sierra Nevada Mountains (grey) and California 
Climate Division number 7 (CA07, light blue).
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Figure 4.2.  Map showing areas burned since 1910 
(shaded) and Sequoia National Forest boundary. 
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4.1 Model Specification

The fire history for SQF permits us to test a variety of hypotheses, including 
whether or not a long-term trend can be identified in the occurrence of large fires. 
Additionally, the time-series allows us to investigate whether shorter-run trends, 
such as changes in fire suppression technology, and seasonal influences, such as 
climatic effects, have influenced the production of large wildfires. Although the 
covariates discussed below are included in the model specification, the results 
should be viewed as illustrative. Because this model is the focus of ongoing 
research, it should be understood that alternative model specifications may (or 
may not) yield somewhat different results. 

4.1.1 Time trend

In the SSNM, the combined influence of livestock grazing during the nineteenth 
century and fire suppression during the twentieth century have changed tree 
species composition and increased the density of forest stands (e.g., see Vankat 
and Major 1978). As early as the late 1800’s, foresters in California were arguing 
for fire exclusion to protect timber resources for the future, and by the early twen-
tieth century fire reduction was occurring (Skinner and Chang 1996). Suppression 
of low and moderate severity fires has caused conifer stands to become denser, 
especially in low- to mid-elevation forests, and shade tolerant, fire-sensitive tree 
species have become established. In turn, these vegetative changes have led to a 
profusion of wildfires that burn with greater intensity than in the past, with crown 
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Figure 4.3.  Fire size distribution, Sequoia National Forest, 1910-2003 
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fires becoming more common (Skinner and Chang 1996). Further, the proportion 
of the annual acreage burned by the largest wildfire on National Forest land has 
trended upwards during the twentieth century (McKelvey and Busse 1996). 
 We hypothesize that a positive trend may be identified in the probability of 
observing large wildfires in the SSNM which may reflect these long-term changes 
in forest composition. A trend variable, timei, was created by setting timei = 1 for 
the first year of the data record, timei = 2 for the second year, and so forth up to 
the final year of the data record. 

4.1.2 Fire suppression technology 

The use of air tankers for fighting wildfires began in California. The first air drop 
was made on the Mendenhall Fire in the Mendocino National Forest in 1955 in 
a modified agricultural biplane. These early aircraft had roughly a 100 gallon 
capacity and dropped about 124,000 gallons of water and fire suppressants during 
that year. By 1959, heavier air tankers with as much as a 3,000 gallon capacity 
were in operation and dropped nearly 3.5 million gallons in 1959 (Anon. 1960). 
Aircraft are now commonly used in fire suppression and their expense is a major 
component of suppression costs on large wildfires (Mangan 2001). 
 Although historical aircraft fire suppression cost data are not available for the 
SSNM, an aircraft variable was specified for use in our large wildfire probability 
model by creating a dummy variable, air_dummy, to approximate the effective 
use of air tankers for fire suppression in California. In particular, we set air_
dummy = 0 for years prior to 1960 and air_dummy = 1 for subsequent years. 

4.1.3 Climate 

The moisture available in fuels is a critical factor in wildfire spread and inten-
sity. Climatic effects are specified in our model using PDSI, which is an index 
of combined precipitation, evapotranspiration and soil moisture conditions. 
PDSI has been used successfully in previous studies of climate-fire relationships 
(e.g., Balling et al. 1992; Swetnam and Betancourt 1998; Mitchner and Parker 
2005; Westerling et al. 2003; Westerling, chapter 6). The index is negative when 
inferred soil moisture is below average for a location, and positive when it is 
above average. In this chapter, we investigate the relationship between climate 
and large fire sizes using observations on July values for PDSI for California 
region 7 (Figure 4.1). PDSI values from the U.S. Climate Division Data set were 
obtained from NOAA for 1895-2003. July PDSI calculated from monthly climate 
division temperature and precipitation is used here as an indicator of inter-annual 
variability in summer drought. 
 We note a pronounced trend toward drier summer conditions over the entire 
period of analysis, with a highly significant trend in July PDSI (Figure 4.4). This 
tendency toward drier summers is probably a function of both lower precipita-
tion and higher temperatures. There has been a trend toward lower precipitation 
throughout the entire Sierra Nevada Mountain range over the period of analysis, 
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while spring and summer temperatures have been much warmer since the early 
1980s. Warmer springs in particular, combined with less precipitation, result in 
an earlier snow melt at mid and higher elevations, which in turn implies a longer, 
more intense summer dry season and fire season (Westerling et al. 2006). 

4.2 Empirical Models 

Two Generalized Pareto models were estimated that fit historical fire size data 
for Sequoia National Forest: (1) a basic model with a constant scale parameter, 
and (2) a covariate model that specified the scale parameter as a linear function 
of a time trend (timei), an air tanker dummy variable (air_dummy), and climate 
effects (PDSI). The models were estimated using the Integrated Matrix Language 
(IML) programming code in the SAS statistical software.
 Prior to estimating either model, it was necessary to choose the threshold fire 
size u above which large or “extreme” fires would be modeled. Mean excess 
plots were created to identify the location of the fire size threshold. As explained 
in Coles (2001), the Generalized Pareto distribution will be a valid representa-
tion of the distribution of exceedances above u if the plot is linear past that point. 
Visual inspection of the mean excess plot indicated that a threshold of 500 acres 
would be appropriate as the plot became generally linear beyond the u = 500 acre 
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Figure 4.4: July PDSI index for California Climate Division number 7, 1910 – 2003.  
Diagonal line is ordinary least squares regression fit to a time trend. 

Figure 4.5:  Acres burned by fire size class, Sequoia National Forest, 1910-2003 
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fire size. Reference to Figure 4.3 also suggests that the rather long tail of the fire 
size distribution may be initiated at a threshold of 500 acres. 
 Although a relatively small proportion (30%) of the total number of fires in 
SQF exceeded 500 acres, they accounted for nearly all (94%) of the total area 
burned during the fire record (Figure 4.5). After eliminating observations with 
total burned area of 500 acres and less, 181 observations remained for estimation 
of the SQF large fire distribution. Summary statistics for the 181 fires, and the set 
of covariates included in the model, are given in Table 4.1. 
 Maximum likelihood techniques were used to estimate the parameters in equa-
tion (4.6), where the scale parameter was specified using covariates as shown in 
equation (4.8). That is, the scale parameter was specified as: σi = β0 + β1timei 
+ β2air_dummyi + β3PDSIi. Standard errors for the parameter estimates were 
derived from the inverse of the observed information matrix, and allowed us to 
test whether the parameter estimates were significantly different than zero. 

4.3 Results

In the simple model with no covariates, both the shape and scale parameter esti-
mates were significantly different than zero at the 1% level. Since the parameter 
estimate for the shape parameter ξ is greater than 0, the distribution has a heavy-
tail (Fréchet). This result is consistent with the studies in the literature reviewed 
above. Further, since ξ > 1, the distribution has an infinite mean and variance, 
which is consistent with the findings reported by Alvorado and others (1998). 
Although forest extent is finite and, therefore, average wildfire size must be 
finite, the finding of an infinite (divergent) mean and variance for fires exceeding 
the 500 acre threshold implies that fires greatly exceeding fire sizes included 
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Table 4.1.  Descriptive statistics for large fires and covariates included in the model.

 Mean Std. Dev. Min. Max.

fire size (ac.) 4,533.49 13,365.25 504.00 149,470.00
time (trend) 47 27.13 1 94
air_dummy 0.47 0.50 0 1
PDSI -0.9954 3.1311 -5.35 7.70

Table 4.2.  Parameter estimates of the basic Generalized Pareto 
extreme value model.

Parameter Value Std. Error t-statistic

shape ξ 1.02 0.15 6.84
scale σ 780.23 115.68 6.75

N = 181   
log likelihood -1,570.7472

Table 4.3.  Parameter estimates of the Generalized Pareto extreme 
value model with covariates.

Parameter Value Std. error t-statistic

shape ξ 0.91 0.14 6.49
scale σ
 constant 593.47 199.12 2.98
 time  15.19 7.88 1.93
 air_dummy -983.44 420.01 2.34
 PDSI -62.70 21.52 -2.91

N = 181   
log likelihood -1,564.25

in the historical record are possible. This finding is important because it indi-
cates that large wildfire production is extremely variable despite the constraints 
imposed by physical conditions. In turn, extreme variability in the production of 
large wildfires makes fire program planning and budgeting difficult, especially 
if the variables driving the stochastic fire generation process cannot be identified 
or reliably forecast. 
 The parameter estimate on ξ in the Generalized Pareto model with covari-
ates indicates that large fires in SQF have a heavy-tail, or Fréchet distribution, 
with infinite variance, which is similar to the basic model. However, because the 
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parameter estimate ξ < 1 in the covariate model, the mean of the distribution is 
finite (in contrast with the basic model). This result is important, as it allows us 
to estimate the size of the average fire for wildfires exceeding the threshold (500 
acres), and evaluate how changes in management inputs influence the average 
size of large wildfires. 
 Including covariates in the Generalized Pareto model suggests that the distri-
bution of large fires in SQF has been non-stationary over the recorded fire history. 
The positive parameter estimate on the time trend is significant at the 10% level 
and indicates that the probability of observing a large wildfire has increased over 
the 94 year fire record. This result should be viewed as illustrative, not definitive, 
and a more fully specified model (considering, for example, non-linear effects 
and other covariates) may alter this finding. None-the-less, this result is consis-
tent with the idea that land use history and fire suppression have contributed to 
altered tree species composition and density which, in turn, have contributed to 
forest conditions with greater flammability. We note further that this effect may 
be confounded to some degree by the increased development of roads and trails 
in SQF over the 94 year period, and the concomitant increase in the number of 
people visiting the forest may have contributed to the increasing trend in large 
wildfires. 
 Consistent with our a priori hypothesis, drier fuel conditions (as measured 
using PDSI) were found to be related with larger fires. The parameter estimate 
on PDSI was negative and significant at the 1% level. Recall that negative values 
of PDSI correspond with the driest conditions, while positive values correspond 
with wet conditions. Consequently, the model results indicate that very dry condi-
tions are associated with an increased probability of large wildfires.
 The parameter estimate on the air tanker dummy variable is negative and signif-
icant at the 5% level and suggests that the deployment of air tankers since 1960 
has decreased the probability of observing large wildfires. This result is consis-
tent with the finding reported by Moritz (1997) who concluded that air tankers 
have aided the containment of large wildfires in California’s Los Padres National 
Forest. Again we note that these results are provisional and might change with 
improved model specifications. 
 Given the parameter estimates, various scenarios can be constructed to demon-
strate the effect of the covariates on the expected large fire size and to evaluate 
the impact of management interventions (Table 4.4). For example, the scenarios 
shown in Table 4.4 indicate that the expected large fire size is quite sensitive to 
the use of air tankers for fire suppression. Under average drought conditions in 
the year 2002, the use of air tankers reduces the expected large fire size from 
24,700 acres to 13,690 acres, a reduction of about 45 percent. Given data on 
fire suppression costs, this relationship could be used to estimate the expected 
benefits (reductions in cost) due to the use of air tankers. 
 Because they represent averages, expected large fire sizes may not be sensitive 
to extreme conditions experienced during a single fire year. The fire year 2002 
provides an instructive example, as the July PDSI for that year was the driest 



15STATISTICAL ANALYSIS OF LARGE WILDFIRES

since 1910. The expected large wildfire size for SQF for 2002, incorporating the 
time trend and the effect of PDSI, was computed to be roughly 15,000 acres if 
air tankers were used in suppression and roughly 26,000 acres if air tankers were 
not used for fire suppression. During the summer of 2002, the largest fire for SQF 
since 1910 was recorded (the McNally fire) which burned nearly 150,000 acres. 
Our estimate of average fire size for that year is much too low and suggests either 
that our model has omitted some important variables (such as wind speed) or 
that other unobserved factors create the extraordinary variance observed in large 
wildfire regimes. 
 Although an annual estimate of expected large wildfire size may be inaccu-
rate under extreme climatic conditions, averaging expected large wildfire sizes 
over time improves the precision of expected values. For example, the average 
large fire in SQF between 1994 and 2003 was 9,625 acres. Using the parameters 
in our Generalized Pareto covariate model, we estimated that the average large 
fire would be 12,247 acres, which is within 1 standard deviation of the sample 
average. Therefore, temporal averaging can smooth out the estimate of expected 
large wildfire size even during periods of extreme climatic conditions. In turn, 
this suggests that estimates of the benefits of large wildfire management inter-
ventions should likewise be temporally averaged and that confidence intervals 
should be reported. 

5. SUMMARY AND CONCLUSIONS

Although extreme value statistical models are not widely used in wildfire 
modeling, the literature review, results, and analysis reported in this chapter 
suggest that further development of these models is warranted for four principal 
reasons:
 • Wildfire production often does not follow a “light-tail” distribution such 
 as a normal or log-normal distribution. Rather, fire size distributions 
 reported for several regions around the globe have heavy-tails characterized 
 by infinite moments.
 • Standard statistical techniques, such as ordinary least squares regression, 
 may produce very misleading parameter estimates under conditions of infi- 
 nite variance (second moment).

Table 4.4.  Scenarios depicting the expected size of large fires (thousand acres) 
under alternative conditions.

Scenario Year 2002 Year 2010 Year 2025  Year 2050

1. Average drought w/ tankers 13.69 15.05 17.60 21.85
2. Average drought w/o tankers 24.70 26.05 28.6 32.86
3. Extreme drought w/ tankers 16.74 18.10 20.66 24.91
4. Extreme drought w/o tankers 27.76 29.12 31.67 35.92
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 • Extreme value models focus attention on the tail of the distribution which, 
 in fire modeling, is where most of the ecological and economic impacts 
 occur. These statistical models are stable under conditions of infinite 
 moments and allow probabilities of catastrophic events to be rigorously 
 estimated. 
 • A set of covariates can be included in extreme value models providing the 
 ability to test hypotheses regarding variables that influence the production 
 of large wildfires. Parameter estimates on covariates can be used to evaluate 
 the impacts of management interventions on the production of large wild- 
 fires.
 A major conclusion of this chapter is that large wildfires are intrinsic to fire-
adapted ecosystems and that memorable events such as the Yellowstone fires 
of 1988 (e.g., Romme and Despain 1989) and the McNally fire of 2002 in SQF 
cannot be simply dismissed as catastrophic outliers or anomalies. Rather, the 
underlying fire generation process operates in a fashion such that wildfires greatly 
exceeding those represented in local or regional fire histories may occur some-
time in the future. Infinite variance in wildfire production, or “wild randomness”, 
greatly complicates planning operations for large fires. For example, moving 
average models of acres burned in large fires likely provide poor forecasts of the 
size of future large fires because the first moment converges very slowly to its 
true value in a wildly random state. The development of decision-making strate-
gies for resources exposed to the state of wild randomness remains a challenge 
for risk managers in the finance and insurance sectors as well as for wildfire 
managers.
 The second major conclusion of this chapter is that the ability to include covari-
ates in a model of large wildfires characterized by infinite variance provides 
a robust method for evaluating the impact of management interventions. For 
example, the impact of deploying air tankers in fire suppression (captured using 
a dummy variable) was illustrated. The parameter estimate on the air tanker 
dummy variable was shown to have a substantial effect on the expected size of 
large fires. Given the size of this effect, data on large wildfire suppression cost 
could be used to estimate the expected benefits (cost savings) attributable to air 
suppression. In turn, the expected benefits of air suppression could be compared 
with air suppression costs. This modeling approach can be more generally used 
to evaluate the costs and expected benefits of other management interventions on 
large wildfires. Future research will be directed at identifying and testing alter-
native extreme value covariate models on an array of large wildfire regimes and 
management interventions with the goal of understanding how large fire costs 
might be better managed. 
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