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PREFACE 

California’s Climate Change Assessments provide a scientific foundation for understanding 
climate-related vulnerability at the local scale and informing resilience actions. These 
Assessments contribute to the advancement of science-based policies, plans, and programs to 
promote effective climate leadership in California. In 2006, California released its First Climate 
Change Assessment, which shed light on the impacts of climate change on specific sectors in 
California and was instrumental in supporting the passage of the landmark legislation 
Assembly Bill 32 (Núñez, Chapter 488, Statutes of 2006), California’s Global Warming Solutions 
Act. The Second Assessment concluded that adaptation is a crucial complement to reducing 
greenhouse gas emissions (2009), given that some changes to the climate are ongoing and 
inevitable, motivating and informing California’s first Climate Adaptation Strategy released the 
same year. In 2012, California’s Third Climate Change Assessment made substantial progress in 
projecting local impacts of climate change, investigating consequences to human and natural 
systems, and exploring barriers to adaptation.  

Under the leadership of Governor Edmund G. Brown, Jr., a trio of state agencies jointly 
managed and supported California’s Fourth Climate Change Assessment: California’s Natural 
Resources Agency (CNRA), the Governor’s Office of Planning and Research (OPR), and the 
California Energy Commission (Energy Commission). The Climate Action Team Research 
Working Group, through which more than 20 state agencies coordinate climate-related 
research, served as the steering committee, providing input for a multisector call for proposals, 
participating in selection of research teams, and offering technical guidance throughout the 
process. 

California’s Fourth Climate Change Assessment (Fourth Assessment) advances actionable 
science that serves the growing needs of state and local-level decision-makers from a variety of 
sectors. It includes research to develop rigorous, comprehensive climate change scenarios at a 
scale suitable for illuminating regional vulnerabilities and localized adaptation strategies in 
California; datasets and tools that improve integration of observed and projected knowledge 
about climate change into decision-making; and recommendations and information to directly 
inform vulnerability assessments and adaptation strategies for California’s energy sector, water 
resources and management, oceans and coasts, forests, wildfires, agriculture, biodiversity and 
habitat, and public health.  

The Fourth Assessment includes 44 technical reports to advance the scientific foundation for 
understanding climate-related risks and resilience options, nine regional reports plus an oceans 
and coast report to outline climate risks and adaptation options, reports on tribal and 
indigenous issues as well as climate justice, and a comprehensive statewide summary report. 
All research contributing to the Fourth Assessment was peer-reviewed to ensure scientific rigor 
and relevance to practitioners and stakeholders.  

For the full suite of Fourth Assessment research products, please visit climateassessment.ca.gov. 
This report contributes to energy sector resilience by providing wildfire scenarios that 
incorporate impacts of climate change. 
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ABSTRACT 

Statistical models of large wildfire presence, number and size were developed for California 
and used to simulate individual large fire events under a wide range of future climate scenarios, 
as well as population and development footprint scenarios based on low, medium and high 
growth scenarios for the State; and three fuels treatment scenarios (0%, 50% and 90%) for Sierra 
Nevada forests. A large library of extreme fire events—consisting of more than 45 million 
statewide maps of large wildfires simulated monthly at 6 kilometer x 6 kilometer resolution for 
1952-2099 for multiple statistical simulations for each combination of climate, population, 
development footprint and fuels management—was constructed to facilitate analyses of the 
impact of changes in extreme events on resources in the state. Mean annual area burned 
increased by 77% statewide under high (RCP 8.5) global greenhouse emissions pathways, while 
maximum area burned statewide increased by 178% by end of century. Extreme wildfire events 
increased in frequency, with fires greater than 10,000 hectares occurring nearly 50% more often. 
Simulated large-scale fuels treatments in Sierra Nevada forests substantially reduced increases 
in burned area, particularly in more moderate (i.e., mid-21st Century or lower cumulative global 
emissions) climate change scenarios. 
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HIGHLIGHTS 

 This study contributes to the literature by moving beyond projections of changes in 
mean large fire occurrence, area burned, or fire danger, to create a resource for 
examining changes in the rare but impactful individual extreme fire events that 
account for most of the effects of fire on natural and human resources. 

 As California’s climate warms, the models used in this study indicate the greatest 
increases in burned area are projected to be in forested areas, with annual average area 
burned in many parts of the Sierra Nevada doubling to quadrupling by end of century 
(comparing 2070-2099 to 1961-1990) under the most extreme warming. 

 Increasing burned area with warming temperatures, particularly in montane forests of 
the northern two thirds of the state, and a greater share of burned area coming from 
extremely large fires, is consistent with recent experience in California and around the 
arid western United States. 

 Fuel treatments have the potential to substantially mitigate increases in burned area 
over much of the Sierra Nevada. A management scenario that treated about 30 percent 
of vegetated area reduced the increase in Sierra Nevada area burned by end of century 
by 16 - 31 percent (comparing 2070-2099 to 1961-1990). 

 The impact of dead heavy fuels from tree mortality on wildfire after the first few 
decades, when heavy fuels have had time to cure and additional new biomass has 
developed, is without historical analogue for the scale of the recent dieback in the 
Sierra Nevada and cannot be quantified with empirical statistical models. 

 Near-term impacts of tree mortality on severely burned acreage via the effects of the 
desiccation and subsequent movement of fine fuels from the forest canopy to the 
surface are expected to be small (1% to 7%) relative to natural system variability. 

 The December 2017 Thomas fire in coastal southern California--the first wintertime 
megafire and briefly the largest fire in state history—occurred against a backdrop of 
factors that may become more common in the future.  These include a very wet 
previous winter that increased fine fuel growth; an extreme, multiyear drought that left 
standing dead fuels; record warmth combined with no significant precipitation from 
Fall into December that helped to desiccate fuels; and an extended high wind event at 
the time of the fire. Ongoing efforts to understanding how these events may co-occur in 
the future will improve our assessment of the likelihood of future fire events of similar 
timing and magnitude and our ability to plan for more fire-safe communities. 
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1: Introduction 

A rapidly warming climate may increase wildfire in California and the western United States in 
the near term, particularly in montane forests of the region, as greater evapotranspiration 
combines with highly variable precipitation to produce more frequent and intense droughts 
with drier vegetation. This may already be occurring, as significant increases in burned area in 
recent decades have been associated with warmer temperatures and increased climate water 
deficit (Westerling et al 2006, Westerling 2016), and half or more of these increases have been 
attributed to anthropogenic warming effects on fuel aridity (Abatzoglou and Williams 2016). 

Recent western US droughts of the 21st century—notably the California-centered drought 
beginning in 2012—were associated with an increased incidence of temperature and 
precipitation extremes compared to major 20th century droughts, and prolonged drought 
conditions westside have been associated with increased area burned and greater fire severity 
(Crockett and Westerling 2018). 

Direct and indirect effects of warming are projected to significantly further increase forest 
wildfire in California, and western and Boreal forests more generally, by the mid-21st century 
(Kitzberger et al 2017). Similarly, western US forest area burned, fire danger, and smoke 
emissions are projected to increase in coming decades (Brown et al 2004, Spracklen et al 2009, 
National Research Council 2011, Hurteau et al 2014). Other studies for California specifically 
have projected significant increases in wildfire activity, particularly in forests (Fried et al 2004, 
Lenihan et al 2008, Westerling and Bryant 2008, Westerling et al 2011a, Batllori et al 2013). 

Increased wildfire activity implies a range of direct and indirect impacts. Fire plays an 
important natural role in California’s fire-adapted ecosystems, and average annual area burned 
in California was higher than present in some ecosystems prior to implementation of effective 
fire suppression in the 20th century. At the same time, the combination of a warming climate 
with accumulating fuels from fire suppression in forested areas is resulting in increased 
incidence of uncharacteristically severe fire with negative ecosystem impacts such as regrowth 
failure, habitat loss, reduced carbon storage, and reduced water quality (Stephens et al 2007, 
Miller et al 2009, Jones et al 2016, Liang et al 2014, Smith et al 2011), and changes to timing and 
quantity of runoff and recharge (Ffolliott et al 1989). While direct wildfire-induced deaths, 
injuries, and property losses can be significant, as was seen in the 2017 coastal northern and 
southern California wildfires, an even larger population is affected by wildfire air pollution 
induced morbidity, mortality, and lost productivity (Reese 2017, Kunzli et al 2006, Silva et al 
2017, Fann et al 2018). 

This study contributes to this literature by moving beyond projections of changes in mean large 
fire occurrence, area burned, or fire danger, to create a resource for examining changes in the 
rare but impactful individual extreme fire events that account for most of the effects of fire on 
natural and human resources. (While large fires are increasing in frequency, and the record for 
1984 to 2013 contains more than 1300 large fires, there are still more than three and a half 
million monthly gridded time and location combinations with no large fires present (9922 grid 
cells x 30 years x 12 months = 3,571,920). The system of statistical models described here was 
used to create large libraries of simulated fire histories with repeated draws for future scenarios 
defined by global emissions pathways, climate model sensitivities to global greenhouse gas 
atmospheric concentrations, population growth, and development footprint. They were also 
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constructed so as to facilitate the incorporation of fuels management and drought-related 
dieback (see appendix B) scenarios on federal forests in the Sierra Nevada. By understanding 
how extreme wildfire events may change under different climate scenarios, stakeholders can 
begin to explore how climate change may impact resources in the state through wildfire. 

Throughout this work, we use the term “extreme” fires to refer to statistically extreme events—
the occurrence of some of the largest fires in the record—rather than to the impacts of those 
fires, which may be both positive and negative at the same time when assessed along different 
dimensions. For example, an extreme fire event could be at once net beneficial in its effects on 
habitat while at the same time exposing a large human population to harmful air pollution and 
imposing significant costs for management and for public and private built infrastructure. The 
next sections describe a system of three probability models conditional on climate and land 
surface characteristics, including a binomial model of large fire presence, a Poisson lognormal 
model for fire number, and generalized Pareto models for area burned in large fires. Together, 
these models describe a complex, compound distribution of area burned in extreme fire events 
in California conditional on climate, topography, population, and development footprint, and 
Sierra Nevada forest fuels management. An overview of model performance versus historical 
observations is then given, followed by examples drawn from future wildfire simulations. 
Appendix B extends this analysis to include scenarios for fire severity in response to forest 
mortality related to the recent, historically unprecedented severe drought centered on 
California. 

 

2: Data and Methods 

2.1 Data 

2.1.1 Spatial and Temporal Domain 
Fire activity is simulated over the state of California at a monthly time step from 1953 through 
2099 on a 1/16-degree lat/long grid (~6 kilometer [km] resolution). Areas of the state outside 
the current combined fire state and federal protection responsibility areas have been excluded. 
This primarily excludes parts of the state landscape intensively converted to human uses— 
agricultural and urbanized areas—where large wildfires are uncommon and local fire 
protection is chiefly concerned with structure fires and small vegetation fires. Some additional 
areas of the state, primarily desert areas near the border with Mexico, are also excluded because 
population and vegetation scenarios excluded these areas. The fraction of each grid cell in 
combined federal and state fire protection responsibility area (FSR), as opposed to local 
protection responsibility, is also included as a potential explanatory value. 

2.1.2 Fire History 
Fire history data for large (>400 ha) wildfires were extracted from the Monitoring Trends in 
Burn Severity database (MTBS 2016, www.mtbs.gov; accessed 12/2008 and 9/2016), and coded 
by discovery date (month, year). We used ESRI Arc Macro Language (ESRI 1999) to intersect 
burn maps with a 1/16th degree grid, assigning each fire to the grid cell where a majority of 
area burned (Keyser and Westerling 2017). We then calculated total area burned as well as 
fractional area burned in six severity classes (unburned to low severity, low severity, moderate 
severity, high severity, increased greenness, or unclassified) by voxel (latitude, longitude, year × 
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month) (Eidenshink et al 2007). MTBS data are comprehensive for fires >400 ha, based on 
remote imagery pre- and post-fire cross-tabulated with documentary fire records, and are 
available with the commencement of the satellite record in 1984. Statistical wildfire models were 
estimated using historical fire and climate data available for 1984–2013.  These years encompass 
an historically broad range of climatic conditions, including the most extreme multiyear 
drought (2012-2015) in either the modern record or paleo-reconstructions for the last 
millennium and two of the three wettest years on record (2016-2017, 1997-1998), as well as a 
significant regional anthropogenic warming trend that has been detectable since the mid-1980s 
(Barnett et al 2008, Griffin and Anchukaitis 2014, Crockett and Westerling 2018, 
http://cdec.water.ca.gov/cgi-progs/products/PLOT_FSI.pdf).  

2.1.3 Population, Vegetation, Ownership 
Gridded population (POP) and vegetated fraction (VFR) were obtained from land use and land 
cover (LULC) and population scenarios for the state of California provided by Sleeter et al (2017) 
for the period 1970-2101. For the 1970-2001 period, scenarios use the USGS LUCAS model to 
"backcast" LULC, beginning with the 2001 initial conditions and ending with 1970. For future 
scenarios, the same model was initialized in 2001 and run forward on an annual time step to 
2100. We obtained simulations with 10 Monte Carlo replications, including an historical 
backcast from 2001-1970 and three projections based on California Department of Finance 
population projections based on high, medium, and low growth rates (Sleeter et. al. 2017,). For 
each growth rate projection, ten variants were provided that incorporated random variation in 
the future spatial footprint of development. 

Additional vegetation characteristics data for the Sierra Nevada, in the form of fire regime 
condition class (FRCC) variables designed to measure the divergence of vegetation structure 
and composition from historical conditions (Hann et al 2008, Laverty and Williams 2000), were 
provided by the US Department of Agriculture’s Forest Service Region 5 using the same 
methodology as the LANDFIRE project (Keane et al 2007, www.landfire.gov). FRCC classes 2 
and 3 were combined (indicating ≥33% departure from historical conditions (Holsinger et al 
2006, Keane et al 2007)) and aggregated to indicate fractional coverage of the 1/16th-degree 
lat/lon grid used here. Fractional data were then normalized to provide a continuous variable 
not bounded by [0,1] as: 

 

FRCC23i = log(( f23i ) / ( 1- f23i )) 

 

where f23i is the fractional vegetated area characterized as FRCC class 2 or 3 in grid cell i. Fuels 

management scenarios were constructed by randomly converting 30 m pixels within each 
federal land management unit from FRCC classes 2 and 3 to FRCC class 1 (i.e. approximating 
historical conditions prior to the era fire suppression, with more open forest canopies, shorter 
fire rotations, and less severe fire (less biomass burned and less mature tree mortality)). 
Historical conditions are defined relative to specific vegetation types at a 30 m resolution by 
U.S. Forest Service using the same methodology as the Landfire project (www.landfire.gov).  

Scenarios reported here examined converting, respectively, approximately 50% and 90% (R50 
and R90 management scenarios) of the potentially treatable forest area to FRCC 1. Note that, 
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while this is a large area, it is considerably less than 50% or 90% of the total area with native 
vegetation. Treating ~50% of the potentially treatable area corresponds to less than 30% of the 
total vegetated area, and 90% of the potentially treatable area corresponds to less than 45% of 
the total vegetated area. Even so, the R50 management scenario effectively would triple the area 
currently with historical fuels conditions, while the R90 management scenario effectively more 
than quadruples the area with historical fuels conditions. In practice, treatments at this scale 
would require a combination of mechanical tree removal and fires actively managed for fuels 
reduction objectives.  

2.1.4 Historical Climate and Hydrologic Data 
A common set of gridded historical (1915–2015) climate data including daily maximum and 
minimum temperature and precipitation (P)—as well as potential (PET) and actual (AET) 
evapotranspiration simulated with these climate data using the Variable Infiltration Capacity 
model (VIC)—were obtained from the Livneh Research Group at the University of Colorado, 
Boulder (Livneh et al 2013). Climatic water deficit (CWD) was then calculated from PET and 
AET (CWD = PET - AET). Average temperature (T) was calculated as the average of daily 
maximum and minimum temperature. Daily values were cumulated to monthly values for all 
variables, as well as cumulative water-year (October - September) totals for CWD (CWD0 = 
current water year, CWD1 = previous water year). Seasonally averaged March - May and June - 
August (Tmam, Tjja) temperatures were calculated for each grid cell, and also a regionally 
average June - August temperature index (TRjja). In addition, we calculated long term mean 
and standard deviation for AET and CWD (AET.mu, AET.sd, CWD.mu, CWD.sd) for each grid 
cell for the 1961-1990 reference period. 

2.1.5 Simulated Climate and Hydrologic Data 
We obtained gridded downscaled climate simulations for 1950-2099 from four global climate 
models using two emissions scenarios (Representative Concentration Pathway (RCP) 4.5 and 
8.5, see IPCC AR5 WG1, 2013) via Scripps Institution of Oceanography, including global models 
from Centre National de Recherches Météorologiques (CNRM-CM5, see Voldoire et al 2011), 
the Canadian Centre for Climate Modeling and Analysis (CanESM2, see Christian et al 2010, 
Arora and Boer 2010), the United Kingdom Met Office’s Hadley Center (HadGEM2-ES, see 
Collins et al 2008), and the University of Tokyo’s Center for Climate System Research (MIROC5, 
see Watanabe et al 2010). These climate models were selected by Fourth Assessment colleagues 
(Pierce et. al. 2018) who applied a set of filters at global, regional, and California scales to obtain 
models that realistically represent variability for California in selected hydrologic variables and 
the climatological drivers of that variability. RCP 4.5 describes a global scenario where 
greenhouse gas emissions begin to decline by mid-21st century and level off by 2080, while RCP 
8.5 describes a world where emissions rise rapidly in coming decades. Climate scenarios were 
downscaled to a 1/16 degree lat/lon grid using the Localized Constructed Analogs (LOCA) 
statistical downscaling methodology (Pierce, Cayan, and Thrasher 2014). These climate 
scenarios were used to drive the VIC hydrologic model, resulting in the same set of variables as 
described above for historically observed climate. Because lagged relationships were examined 
between wildfire and climate up to two water years preceding a fire event, the projections 
allowed examination of 147 years, from 1953 through 2099. 
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2.1.6 Topographic Data 
Topographic data on a 1/16-degree grid were derived from the GTOPO30 Global 30 Arc Second 
(~1km) Elevation Data Set (Mitchell et al 2004, Gesch and Larson 1996, Verdin and Greenlee 
1996). We calculated mean and standard deviation of elevation, slope, and aspect for each grid 
cell. 

2.2 Modeling 

2.2.1 Model: Fire Presence 
Probability of large (>400 ha) fire presence or absence was modeled fitting a spatially explicit 
logistic regression model to land surface characteristics (topography, population, vegetation 
fraction) and climate using a logistic regression model. A generalized linear model with 
binomial errors was fit using the glm() function in R. The model specification is described as 
follows: 

Let bij = 1 denote the presence of one or more large (> 400 ha) fires and bij = 0 the absence of a 
large fire, burning for each grid cell i and month j. Then bij is a random variable with the 
Bernoulli distribution, and the probability pij of a large fire is:  
 

 

pij = exp(ij ) / ( 1 = exp(ij ) ) 

and ij is the linear predictor 

 

ij =  ࢼ
o
	× g( AET.mui , CWDmui ) + 

ࢼ ∑
m 

× g(AET.mui , CWDmui ) × q
m 

( X
mij 

) + 

ࢼ ∑
m 

× X
mij 

 

where X
mij 

is the mth explanatory variable for location i and month j (Table 1), g(AET.mui , 
CWDmui ) denotes a semiparametric function g of the interaction between long term average 
evapotranspiration and long-term average climatic water deficit, q

m 
( X

mij 
) denotes a parametric 

or semiparametric function of the mth explanatory variable (see Hastie et al 2001), and ࢼ
 
are 

estimated parameters. Semiparametric functions here are splines and thin-plate splines 
expanded into basis functions that can be used linearly in the regression (Preisler and 
Westerling 2007). Similar mixed parametric and semiparametric models for large fire presence 
have been used by the author and others for both seasonal forecasting and climate change 
impact assessment (Preisler and Westerling 2007, Preisler et al 2008, Preisler et al 2011, 
Westerling et al 2011a&b). Long-term average climatic water deficit and evapotranspiration 
have together been shown to best describe the occurrence of coarse vegetation types on the 
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landscape (Stephenson 1998), and coarse vegetation types and their climatic context strongly 
condition the response of fire regimes (frequency, extent and severity) to climatic variability 
(Westerling 2009, Westerling et al 2009, Krawchuck and Moritz 2011). Prior fire 
presence/absence models using cumulative moisture deficit are described in Westerling et al 
(2011a&b). 

Table 1. Logistic regression model specification for large fire presence 

 

ij
 = 

m 
× g(AET.mu

i
 , CWDmu

i
 ) + ∑ 

m 
× g(AET.mu

i
 , CWDmu

i
 )

 
× q

m
( X

mij
 ) + ∑ 

m 
× X

mij
 

for	∑ g(AET.mu
i
 , CWDmu

i
 )

 
× q

m
( X

mij
 ) terms 

  description 

 q
m

( X
mij

 ) =  q(CWD
ij

)  basis	spline	of	cumulative	monthly	climate	
water	deficit 

 q(T
ij

) basis	spline	of	average	temperature 

 q(VFR
ij

) basis	spline	of	vegetation	fraction 

 q(POP
ij

) basis	spline	of	population 

 CWD0
ij

 cumulative	water	year	climate	water	deficit 

 CWD1
ij

  lagged	cumulative	water	year	climate	water	
deficit 

 AET
ij

 cumulative	monthly	actual	evapotranspiration 

 Emu mean	elevation 

 M78 * TRjja
ij 

 Regional	JJA	temperature	interacted	with	a	
factor	for	month	=	July	or	August 
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 M factor	for	month	of	the	year 

for	∑ β
m 

× X
mij

 terms 

  description 

 X
mij

 =  CWD
ij

 * AET
ij

  interaction	between	cumulative	monthly	
climate	water	deficit	and	cumulative	monthly	
actual	evapotranspiration 

 FSR standardized	fraction	of	grid	cell	in	federal	or	
state	protection	responsibility	areas 

 Tmam
ij

 average	MAM	temperature 

 

Model specifications were tested by sequentially adding and removing explanatory variables X
m 

and comparing Akaike Information Criterion scores (AIC) (Akaike 1974 & 1981). The model 
with the lowest AIC was retained. Where differences in AIC were small (close to 2), expert 
judgement and parsimony guided model selection. AIC is a measure of goodness of fit that 
penalizes increasing model complexity and is not distorted by spatially autocorrelated 
variables. Model specifications tested for large fire presence/absence were based on models 
used in Westerling et al (2011a), the primary differences being a change to a finer spatial scale 
(from a 1/8 degree to a 1/16 degree lat/lon grid) with a larger minimum fire size (from 200 ha 
to 400 ha), with the latter change due to the use here of MTBS fire histories rather than 
documentary fire histories. 

Model validation was performed by calculating model parameters with a sample arbitrarily 
restricted to 1984-1999, applying parameters to the full thirty-year sample to estimate predicted 
fire presence, and comparing the correlations with correlations for the model estimated with the 
full thirty-year sample. Spearman’s rank correlations are reported throughout. Note that while 
the anthropogenic trend in temperature is present throughout the model estimation period, it is 
stronger in the second half of the record. To the extent that model skill is comparable across 
both periods for parameters estimated on the 1984-1999 data, we should have more confidence 
that this model can be used to simulate wildfires under additional near-future warming.  

Fire presence/absence was simulated for both historically observed and simulated climate by 
repeated random draws from a Binomial distribution with probabilities p

ij
. 

2.2.2 Model: Fire Number 
Following the methodology in Westerling et al (2011b), a Poisson lognormal probability model 
was fit to fire numbers fij  observed per month i and grid cell j where bij > 0 and linear predictor 
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 ij > -7.79, an arbitrary threshold below which all observed fij < 2, using the rplnmle() functionࣂࣂ

in the degreenet library in R (Jones and Handcock 2003). Random Poisson lognormal draws were 
truncated not to exceed 2 in all the simulations, since over the historically observed period there 
were no instances of more than two large fire ignitions (observed 0 ≤ fij ≤ 2), and even these 
were rare (only five instances over all of California in 30 years).  

2.2.3 Model: Fire Size 
Extreme values over a fixed threshold—such as wildfire sizes exceeding 400 ha—can be 
described statistically with a generalized Pareto distribution (GPD) (Coles 2001). A growing 
body of work indicates that wildfire area burned in large fires follows a heavy-tailed Pareto 
distribution in a diverse array of ecosystems (Strauss et al 1989, Moritz 1997, Malamud et al 
1998, Ricotta et al 1999, Cumming 2001, Song et al 2001, Zhang et al 2003, Malamud et al 2005, 
Ramesh 2005, Holmes et al 2008, Preisler et al 2011, Westerling et al 2011b). Fires sizes over 400 
ha were modeled here with a generalized Pareto distribution fit to the logarithm of area burned, 
from MTBS fire records, with covariates using the gpd.fit() function in the ismev library in R, 
derived from Coles (2001), as in Westerling et al (2011b). 

The GPD is described by three parameters: threshold u, scale ࣌, and shape ࢻ	such that the 
expected area burned Aij for a fire at a given time and place takes the form: 

 

۳۳( log( Aij ) | Aij > u) = ࣌࣌( X
mij 

X )ࢻࢻ - 1 ) / (
mij 

) ) 

 

where ࣌	and ࢻ	can be specified as functions of covariates X
m
. 

The threshold u used for defining extremes should be high enough that the remaining data are 
legitimately extreme values, but low enough to maximize the size of the data set. A rule of 
thumb is to choose a threshold where the mean of the sample defined by that and higher 
thresholds is a linear function of the threshold value (Coles 2001). Prior work with fire histories 
in California (Holmes et al 2008, Westerling et al 2011a, Preisler et al 2011) indicates a minimum 
threshold of 200 ha or greater is appropriate. The 400 ha threshold used here was imposed by 
the lower limit reported in the MTBS fire history data source. 

Two GPD models were estimated for simulating fire sizes in California: one fit to fire histories 
for federal forest areas in the Sierra Nevada, and one fit to fire histories for the rest of the state. 
Separating out Sierra Nevada forests facilitates further use of these models for informing 
climate adaptation planning in the Sierra Nevada, where the US Department of Agriculture’s 
Forest Service Region 5 has provided historical data and fuels management scenarios—
expressed as changes in FRCC categories at 30m scale—describing how fuel densities may be 
reduced to modify future fire probabilities. An array of climate and topographic variables, as 
well as FRCC23, were tested as covariates for both the shape and scale parameters for GPD 
models in the Sierra Nevada and the rest of the state, using AIC to compare different model 
specifications.  

The threshold used in this study (400 ha) is double the level used in prior studies in California 
and elsewhere (Holmes, Huggett and Westerling 2008, Westerling et al 2011a, Westerling et al 
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2011b, Alvarado et al 1998). The rule of thumb is to create a mean excess plot for a fire history 
and to select by visual inspection a threshold above which the plot is linear (Coles 2001). Using 
a larger threshold here means using a smaller sample of fires to estimate the distribution, but 
the excluded fires are the smallest fires that provide the least information about the behavior of 
the tail of the distribution.  

2.3 Fire Duration 

Note that the fire history used to build these models provides the discovery date and the total 
burned area but does not provide a day by day progression of burned area. Fire spread rates 
can vary greatly with weather conditions and suppression over the course of a fire. Even with 
accurate estimates of fire start and fire duration, we would not know when most of the area 
burned. Deciding precisely when a fire is over is problematic as well, since official control and 
out dates can be somewhat arbitrary and are influenced by administrative as well as 
meteorological factors. Consequently, we do not attempt to define or model fire duration here. 
However, since the fire start dates modeled here are typically date of discovery, and fires are 
only included if they exceed 1000 acres, it is likely that spread rates are often very significant at 
or soon after the date of discovery, or else the fire would be extinguished before it could reach 
the 400 hectare threshold to be included in the fire history used here. 

2.4 Summary of Scenarios 

Future scenarios described here were defined by two concentration pathways for greenhouse 
gasses (RCP 4.5 and 8.5), four climate model runs with varying sensitivities to greenhouse gas 
forcing as well as different realizations in background climate variability (CanESM2, CNRM- 
CM5, HadGEM2-ES, and MIROC5), three population growth scenarios (low, medium and high) 
with ten spatially stochastic variants each, and recent historical FRCC. This resulted in an initial 
240 scenarios (2 x 4 x 3 x 10). For each of these, 100 random draws were made from the 
combined binomial, Poisson lognormal, and GPD models described above to capture a broader 
range of variability in wildfire burned area, the impacts from which are dominated by a small 
number of low-probability extreme events. The result is 24,000 scenarios, each covering 9922 
grid cells for 1764 months (12 months x 147 years (1953 to 2099)). This resulted in 42,336,000 
maps of statewide monthly fire activity for each variable considered (i.e., large fire presence, 
number, extent, …). In addition, fire activity was simulated for each of two fuels management 
scenarios for Sierra Nevada forests, where approximately 50% and 90% of altered fuels 
considered by the Forest Service to be amenable to treatment (thinning and burning) were 
treated, in combination with the two emissions pathways, the same four GCMs, and one 
medium population scenario. The result was an additional 1,600 scenarios (2 x 2 x 4 x 1 x 100), 
resulting in 2,822,400 additional maps for each variable. 

These data were further aggregated to produce annual area burned in all fires originating 
within a grid cell. Where annual area burned exceeded the average vegetated area of a grid cell, 
excess burned area was arbitrarily allocated proportionately to all the surrounding grid cells. 

Where this implied large fires burning into others’ footprint, total area burned in the combined 
fires was reduced by the amount of overlap that exceeded the burnable area, reflecting 
limitations imposed by the availability of fuels. 
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Similarly, 1000 draws were made from the combined binomial, Poisson lognormal, and GPD 
probability models driven by historically observed climate, for comparison with observed fire 
activity. Monthly and annualized simulated fire presence and area burned were aggregated 
statewide, averaged over 1000 simulations, and correlated with observed. In addition to 
correlations, we also graphically compared simulated to observed area burned. Because the low 
probability of extreme events combined with a fat-tailed probability distribution means that 
observations are highly variable for a given level of fire risk, multiple similar simulations were 
grouped and compared to observations as follows: observed and simulated monthly statewide 
aggregate area burned were ranked according to the average simulated value for each month, 
and grouped into 30 bins each corresponding to 12 months with similar predicted burned areas. 
Box plots were graphed for both observed and simulated monthly statewide area burned in 
each bin (with 12 observed values versus 12,000 simulated values in each bin). 

 

3: Results 

3.1 Logistic Regression for Large Fire Presence (Binomial Model) 

The best model specification for fire presence incorporated land surface characteristics such as 
population, vegetation fraction, fractional area in state and federal protection responsibility, and 
elevation, with monthly and water year climate water deficit, monthly and seasonal 
temperature, actual evapotranspiration, and month of the year (Table 1). 

Monthly fire presence simulated using historical (1984 - 2013) climate aggregated statewide and 
averaged over 1000 simulations was highly significantly correlated with observed fire presence 
(rho = 0.84, p-value < 2.2e-16). Cross-validated simulated fire presence was also highly 
significantly correlated (rho = 0.83, p-value < 2.2e-16). Annual simulated fire presence was 
significantly correlated with observed (rho = 0.55, p-value = 0.002), as was cross-validated 
simulated fire presence (rho= 0.46, p-value = 0.011). 

3.2 Conditional Model for Fire Number (Poisson Lognormal Model) 

A Poisson lognormal model specification was chosen that closely mimicked historical 
occurrence of multiple large fire ignitions, conditional on ࣂࣂij: 

 

for bij = 1 and ࣂࣂij ≤ -7.79, fij = 1 

for bij = 1 and ࣂࣂij > -7.79, fij ~ Poisson lognormal with mean = -4.94 and 

standard deviation = 0.3 

for bij = 0, fij  = 0 

 

Historically, five occurrences of large fire ignitions in the same month and location were 
observed. Across 1000 simulations over the state using historical climate for 1984-2013, the 
average occurrence of multiple ignitions was approximately 5. 
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3.3 Conditional Area Burned (GPD Model) 

In the Sierra Nevada, none of the covariates offered significant improvements over a stationary 
model for the GPD shape parameter, while the scale parameter was modeled as a function of 
CWDij, Tjjaij, and FRCC23j. For the rest of the state, the best GPD model selected with AIC had 

the scale parameter as a function of Tjja and TRjja, and the shape parameter as a function of a 
thin plate spline for AET.mui and CWD.mui interacted with monthly CWDij. These models result 
in reasonable fits between observed and simulated distributions of large fire sizes (Figure A1).  

 

Figure A1: Residual Probability and residual quantile plots for Sierra Nevada (left) and Statewide, 
excluding Sierra Nevada (right). 

 

Thus, for both the Sierra Nevada and the rest of the state, conditional area burned varies with 
seasonal and interannual climate, driven by the scale parameter (in the Sierra Nevada and the 
rest of the state) and the shape parameter (in the rest of the state). While the statewide model 
excluding the Sierra Nevada still includes very diverse fire regimes, the response of the shape 

Sierra	Nevada	 Statewide	GPD	(ex:	Sierra	
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parameter in that model to current month CWD varies with the interaction between long term 
average AET and long term average CWD. As noted above, the interaction between long term 
average AET and CWD is a good proxy for coarse vegetation type (Stephenson 1998). The shape 
of the statewide fire size distribution is varying with coarse vegetation characteristics in each 
grid cell, reflecting differences in how fire size responds to climate in different vegetation types.  

3.4 Historical Area Burned Simulations 

Monthly area burned simulations, incorporating all binomial, Poisson lognormal, and GPD 
models, aggregated statewide and averaged across 1000 simulations, were highly significantly 
correlated with observed monthly area burned (rho = 0.78, p-value < 2.2e-16). Average 
annualized area burned simulations aggregated statewide were also significantly correlated 
with observed annual burned area (rho = 0.62, p-value = 0.0003). 

The extremely large fires that drive most wildfire impacts are low probability events in any 
given month and location, even when conditions historically have been conducive to fire, 
making direct comparisons with expected burned area difficult. However, even binning over a 
relatively small number of months (12) and comparing to a sufficient number of simulations to 
describe the full distribution of expected outcomes serves to demonstrate some strengths and 
weaknesses of this modeling approach (Figure A2).  
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Figure A2: Binned monthly statewide predicted area burned in hectares (black boxplots) versus 
observed area burned (red boxplots). Monthly data for 30 years were aggregated statewide, 

ranked, and clustered in equal-sized bins corresponding to 12 ranked months. Sample size per 
observed bin is 12 observations of statewide area burned. For each predicted bin, 1000 

simulations are included for each month, resulting in 12,000 member samples for each observed 
binned boxplot. Boxes show interquartile range, bold bars show medians, and whiskers denote 

1.5 times the interquartile range. 

 

For months with statewide area burned below about 15,000 ha, observed and simulated area 
burned appear quite similar, reflecting the tendency of the seasonal cycle to limit area burned in 
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a predictable way during cooler, wetter months of the year. As predicted area burned increases, 
the influence of interannual variability in climate on observed fire increases. While there is still 
a strong tendency for the observed and simulated area burned to increase together, the effects of 
the relatively small sample size for observed very large fires and the difficulty in reliably 
modeling extremes in fire activity influenced by both clustering in ignitions due to factors such 
as dry lightning events, and to influences of meteorological factors such as wind events on the 
growth of fires, become apparent (Figure A2). Despite these limitations, observed and 
simulated area burned were highly correlated, and the combined probability models explained 
about 31% of inter-annual variability in area burned statewide. The fact that observed area 
burned distributions for the largest bin sizes were similar to the simulated areas is encouraging, 
since these months drive most of the interannual variability in wildfire.  

3.5 Projected Area Burned Simulations 

The greatest differences in simulated future area burned were between different emissions 
scenarios, rather than between climate models, while population and vegetation fraction 
projections had negligible effects on projected burned area (Figures A3 & A4 show increases in 
emissions scenarios versus GCMs for mid-range population growth scenarios. High and low 
growth scenarios are not shown.) The greatest differences between RCP 4.5 and 8.5 were at the 
end of the 21st century, as increasingly divergent greenhouse gas concentrations drove warming 
that increasingly dried the vegetation that fuels wildfires. Composite maps of area burned by 
RCP combining simulations for all four GCMs (Figure A5) show the greatest increases in 
burned area are projected to be in forested areas of the state, particularly in the Sierra Nevada 
and southern Cascades in northern and central California, with annual average hectares burned 
in many parts of the Sierra Nevada doubling to quadrupling by end of century under the most 
extreme warming. 
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Figure A3: Average annual area burned by GCM and 30-year period for 
RCP 4.5, mid-range population growth. 
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Figure A4: Average annual area burned by GCM and 30-year 
period for RCP 8.5, mid-range population growth. 
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Figure A5: Average annual area burned composites: RCP 4.5 (left), 
RCP 8.5 (right), combining 4,320,000 simulations (30 years x 12 

months x 1000 random draws x 4 GCMs x 3 population scenarios). 
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The fuel treatment scenarios explored here substantially mitigated increases in burned area over 
much of the Sierra Nevada. Without fuels reduction, large fires’ area burned simulated under 
the RCP 4.5 scenarios (averaged across four GCMs) increased 48% by mid-21st

 
century (Figure 

A6). The R50 and R90 management scenarios limited that increase to 33% and 28%, respectively. 
Similarly, by end of century, Sierra Nevada large fire burned area increased 120% over the 1961-
90 period, and the R50 and R90 management scenarios limited the increase to 101% and 92% 
(Figure A7). 

 

Figure A6: Average annual area burned composites for RCP 4.5: 0% 
(left), 54% (mid), and 90% (right) of altered forest fuels treated to 

restore pre/fire suppression fuel densities for mid/century (top) and 
end of century (bottom). 
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Figure A7: Average annual area burned composites for RCP 8.5: 0% 
(left), 54% (mid), and 90% (right) of altered forest fuels treated to 

restore pre/fire suppression fuel densities for mid/century (top) and 
end of century (bottom). 

 

 

Pooling 100 randomly selected simulations from each of twelve scenarios (four GCMs and three 
population growth scenarios, no fuels management) for RCP 4.5 versus RCP 8.5 and 
aggregating annualized burned area statewide, a time series of the simulations shows that the 
greatest impact is on the frequency and size of extreme wildfire events (Figure A8). While the 
median annual statewide area burned for each RCP only begins to noticeably diverge late in 
century, there is a marked and increasing tendency toward greater extreme events under RCP 
8.5 beginning early in the 21st century and rapidly accelerating after the mid-21st century. By end 
of century, the frequency of fires > 10,000 ha increases nearly 50%. Mean annual statewide area 
burned increases over 77%, while maximum statewide annual area burned increases by more 
than 178%. 
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Figure A8: RCP4.5 vs 8.5 California Area Burned Quantities. Pooled simulations of annualized and 
aggregated statewide area burned for RCP 4.5 (blue) versus 8.5 (red). 100 randomly selected 

simulations from scenarios corresponding to each of four GCMs (CanESM2, CNRMKCM5, 
HadGEM2KES, MIROC5) and three population scenarios (low, mid and high range growth), 

resulting in 1200 simulations per year per RCP. Light shading shows middle 95%, dark shading 
shows middle 50%, and bold lines show median simulated values for statewide annual area 

burned. 

 

3.6 Projected BA90 Severity Simulations 

High severity area burned with ninety percent or greater basal area killed (BA90) was also 
modeled as a function of climate and land surface characteristics, with the addition of an 
independent variable for dead biomass from recent drought-related tree mortality in Sierra 
Nevada forests.  
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Due to the lack of data regarding the impact of dead and down heavy fuels, the modeling in 
Appendix B was limited to and movement of fine canopy fuels (pine needles) to the surface fuel 
layer in the next decade and a half. A postulated potential effect further into the future is that 
there might exist a risk of mass fires once a substantial quantity of dead and down heavy fuels 
(logs) cure out and sufficient fine fuels grow up around them to facilitate the spread of a fire 
severe enough to ignite these fuels (see for example Stephens et al 2018). There are no recent 
historical analogs for this situation that could provide data to estimate this postulated risk for 
Sierra Nevada forests. 

Methods used were the same as those described above for total area burned (see Appendix B). 
In the absence of hard data, this part of the analysis engaged in scenario building, applying 
expert opinion guided by recent studies (Stephens et al 2018, Preisler et al 2017), and allowing 
for wide uncertainties to consider what the potential near term effects might be of recent tree 
mortality on subsequent high severity wildfire.  

The fractional change in BA90 area immediately following the drought attributed to dessication 
of fine fuels (pine needles) due to prior tree mortality was relatively small and insignificant 
when considered from the perspective of the Sierra Nevada region as a whole, ranging from a 
less than 7% increase to less than 1%, averaged over all four global climate models. Most of the 
effect is concentrated where the highest mortality occurred, along the western slopes of the 
central and southern Sierra Nevada (Figures B2 - B6). However, significant t-tests for grid cells 
in these areas were no more numerous than what would be expected to be observed by chance. 
In other words, the effects on BA90 postulated for each scenario were small compared to the 
background variability inherent in the modeled system. This is not surprising, given the 
extreme fat tail distributions that characterize both fire size and high severity burned area. 

 

4: Discussion 

Increasing burned area with warming temperatures, particularly in montane forests of the 
northern two thirds of the state, and a greater share of burned area coming from extremely 
large fires, is consistent with recent experience in California and around the arid western United 
States. Westerling et al (2006) found that regional forest wildfire activity increased substantially 
since the mid-1980s, strongly associated with warmer temperatures, earlier spring snowmelt, 
and increased climatic water deficit. This mid-1980s date for noticeable increases in wildfire 
associated with temperature also roughly corresponds to the first date Barnett et al (2008) could 
detect a warming signal in western US temperature and hydrologic variables, and they 
attributed at least 60% of changes in winter temperature and snowpack to anthropogenic 
climate change. In a recent update on western wildfire trends, Westerling (2016) found that area 
burned in western forests in the decade through 2012 had increased by 1,271% over the 1973- 
1982 period, with Sierra Nevada forest area burned up by 324% over the same period, and 
statistically significant increases in burned area in non-forest vegetation across the region. 

Abatzoglou and Williams (2016) attribute at least half the recent increases in western US forest 
burned area to anthropogenic warming. 

The work presented here describes statistical models for simulating future individual fire events 
on a monthly time step on a grid of approximately 6 km × 6 km (16th degree lat/lon) over 
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California. By constructing large libraries of simulations based on scenarios for future climate, 
population, and development footprint, we provide a resource for the analysis of the 
probability of extreme events and their impact on resources around the state. All too often, we 
are presented with future projections of fire as changes in mean fire occurrence, burned area, or 
related weather indices, when the majority of wildfire impacts are due to low probability, 
extreme fire events discrete in time and place. By working with simulations of individual large 
fire events, we can begin to understand how their spatial and temporal clustering uniquely 
impacts resources in ways that changes in mean area burned cannot reveal. 

As vegetation type and fuel amount, structure, and continuity change in the future due to 
altered disturbance regimes (for example, changes in the frequency, seasonality, duration, 
extent and severity of wildfire and infestations by beetles and other pathogens) and climate, 
future wildfire activity and its response to climatic variability may change in ways that 
constrain further increases or even reduce wildfire activity in some ecosystems (Flannigan et al 
2009, Krawchuk et al 2009, Batllori et al 2013). Many regional studies project spatially diverse 
changes in wildfire (e.g. Krawchuck et al 2009, Kitzberger et al 2017), and recent work 
demonstrates great spatial variability in wildfire responses to climate variability and trends 
(Krawchuk and Moritz 2011, Westerling 2016, Keyser and Westerling 2017, Kitzberger et al 
2017). It is reasonable to expect that dramatic changes in climate and disturbance regimes may 
eventually change vegetation in ways that cannot be anticipated by statistical models like those 
employed here, which are informed by historical fire-vegetation-climate relationships in the 
context of current vegetation types and their fuels characteristics. Consequently, the modeling 
results here may overestimate late 21st century changes in wildfire, particularly in forested 
areas, because they implicitly assume vegetation and fuels characteristics remain constant. 
Changes by mid-century, which are no longer far off, seem more robust, because increases in 
fire frequency and extent by then are still well within the prehistorical range (Stephens et al 
2007). Differences between RCP 4.5 and RCP 8.5 are also less extreme before mid- century, 
indicating they are relatively robust to near term changes in the trajectory of greenhouse gas 
emissions as well. 

Simulations with large landscape-scale fuels treatments substantially reduced projected climate- 
driven increases in Sierra Nevada forest area burned. Fuels management implies reduced 
concentrated impacts from future extreme events at some cost in terms of carbon release and 
health impacts from chronic exposure to smoke from controlled burns (Silva et al 2017). 

However, Liang et al (2018) show that comprehensive fuels treatments implemented gradually 
over the coming century are likely to increase net carbon storage in Sierra Nevada forests, while 
Liu et al (2017) estimate that prescribed fires may result in a net reduction of particulate 
emissions. 

At the same time, recent western US droughts of the 21st century have been associated with 

greater temperature, precipitation, and climatic water deficit extremes than major 20
th 

century 
droughts, with greater area burned and high severity burn fractions (fraction of burned area 
that is high severity) in drought affected areas, and greater subsequent insect-induced tree 
mortality following drought (Crockett and Westerling 2018). The recent California-centered 
extreme drought starting in 2012 in particular resulted in widespread tree mortality in Sierra 
Nevada forests (Stephens et al 2018). The standing dead vegetation is hypothesized to increase 
short term canopy fire probabilities, but may subsequently contribute to a reduction in canopy 
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density that reduces the probability of severe canopy fires, while the accumulation of large dead 
woody surface fuels may eventually increase the probability of mass fires in ways difficult to 
quantify with current fuel models (Stephens et al 2018). Current work seeks to estimate how the 
drought-induced dieback in Sierra Forests may interact with the consequences of fire and fuels 
management and accelerating climate change. Given the lack of observed analogues, this effort 
will require a sustained integrated effort involving fire and dynamic vegetation modeling 
informed by extensive field observations and validation against observed fire activity. 

On-going extensions to this incorporate fire severity, emissions, and carbon budget variables 
with these scenarios, as well as integrating these statistical fire models with dynamic vegetation 
models to better understand feedbacks between vegetation and wildfire, and with habitat 
suitability models to understand how changing vegetation and wildfire may constrain future 
management options around endangered species habitats. Parallel, ongoing work also seeks to 
incorporate downscaled winds and relative humidity into fire simulations, to explore how 
changing wind regimes may interact with changes in precipitation variability and timing, as 
well as warming, to affect fire regimes in coastal California. The December 2017 Thomas fire in 
coastal southern California--the first wintertime megafire and, as of July 2018, the largest fire in 
state history—occurred against a backdrop of factors that may become more common in the 
future.  These include  a very wet previous winter that increased fine fuel growth;  an extreme, 
multiyear drought  that left standing dead fuels; record warmth combined with no significant 
precipitation from Fall into December that helped to desiccate fuels; and an extended high wind 
event at the time of the fire (https://climatefeedback.org/discussion-experts-california-
wildfire-links-climate-change/). Understanding how these events may co-occur in the future 
will improve our assessment of the likelihood of future fire events of similar timing and 
magnitude and our ability to plan for more fire-safe communities.  

This research includes simulations of extreme wildfire events under a comprehensive set of 
future climate, demographic, and ecosystem management scenarios to support assessment of 
potential future wildfire impacts—as well as adaptation strategies--on habitat quality, water 
resources, energy and transportation infrastructure, residential and commercial property losses, 
insurance markets, and public health under the California’s Fourth Climate Change 
Assessment. 
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APPENDIX A: Supporting Figures 
 

 

 

Figure A1: Residual Probability and residual quantile plots for Sierra Nevada (left) and Statewide, 
excluding Sierra Nevada (right). 
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Figure A2: Binned monthly statewide predicted area burned in hectares (black boxplots) versus 
observed area burned (red boxplots). Monthly data for 30 years were aggregated statewide, ranked, 

and clustered in equal-sized bins corresponding to 12 ranked months. Sample size per observed 
bin is 12 observations of statewide area burned. For each predicted bin, 1000 simulations are 

included for each month, resulting in 12,000 member samples for each observed binned boxplot. 
Boxes show interquartile range, bold bars show medians, and whiskers denote 1.5 times the 

interquartile range. 
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Figure A3: Average annual area burned by GCM and 30-year period for 
RCP 4.5, mid-range population growth. 
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Figure A4: Average annual area burned by GCM and 30-year period 
for RCP 8.5, mid-range population growth. 
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Figure A5: Average annual area burned composites: RCP 4.5 (left), 
RCP 8.5 (right), combining 4,320,000 simulations (30 years x 12 

months x 1000 random draws x 4 GCMs x 3 population scenarios). 
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Figure A6: Average annual area burned composites for RCP 4.5: 0% 
(left), 54% (mid), and 90% (right) of altered forest fuels treated to restore 

pre/fire suppression fuel densities for mid/century (top) and end of 
century (bottom). 
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Figure A7: Average annual area burned composites for RCP 8.5: 0% 
(left), 54% (mid), and 90% (right) of altered forest fuels treated to restore 

pre/fire suppression fuel densities for mid/century (top) and end of 
century (bottom). 
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Figure A8: RCP4.5 vs 8.5 California Area Burned Quantities. Pooled simulations of annualized and 
aggregated statewide area burned for RCP 4.5 (blue) versus 8.5 (red). 100 randomly selected 

simulations from scenarios corresponding to each of four GCMs (CanESM2, CNRMKCM5, 
HadGEM2KES, MIROC5) and three population scenarios (low, mid and high range growth), 

resulting in 1200 simulations per year per RCP. Light shading shows middle 95%, dark shading 
shows middle 50%, and bold lines show median simulated values for statewide annual area 

burned. 
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APPENDIX B: Influence of Drought-related Tree 
Mortality on Wildfire Severity 

B.1 Highlights 

 

� Near-term impacts of tree-mortality on severely burned acreage via the effects of the 
desiccation and subsequent movement of fine fuels from the forest canopy to the surface 
are small (1% to 7%) relative to natural system variability. 

� The impact of dead heavy fuels from tree mortality on wildfire after the first few decades, 
when heavy fuels have had time to cure and additional new biomass has developed, is 
without historical analogue for the scale of the recent dieback in the Sierra Nevada and 
cannot be quantified with empirical statistical models. 

 

B.2 Introduction 

An extreme multiyear drought centered on California beginning in the 2011-2012 water year and 
extending through 2015 was driven by an increased incidence of both temperature and 
precipitation extremes, and significantly associated with increases in wildfire area burned, high 
severity burned area, and drought-related tree mortality (Crockett and Westerling 2018).  More 
than 100 million trees died (USDA 2016), with mortality significantly increasing with stand 
density and climatic water deficit (Young et al 2017).  At fine spatial scales within the limited set 
of fires that intersect recent mortality data, patches of mortality were positively associated with 
subsequent fire, with hectares affected by fire 1.8 times larger on average in forest locations 
where roughly half the area was affected by tree mortality (Preisler et al 2017).  Similarly, 
Stephens et al (2018) related stand level mortality up to between 40 and 60 percent to subsequent 
burned area in the Rough Fire.   

Given these results, the question naturally arises:  to what extent might widespread tree 
mortality in the Sierra Nevada affect subsequent high severity wildfire area burned?  We focus 
in particular on high severity burned area, with the metric used here the area burned with ninety 
percent or more basal area killed (BA90), because of its ecological significance (e.g., in forest 
areas with 50% or more BA90, spotted owl nesting sites are abandoned (Jones et al 2016)), and 
the likelihood that very high severity burns are more liable to be a threat to infrastructure.   

The challenge facing this kind of analysis is the paucity of observations of significant fires 
impinging on areas with widespread tree mortality at the scale and severity to be instructive 
regarding potential future fire risks after a singular event like this. Crockett and Westerling 
(2018) related fire area, fire severity and drought dieback to drought occurrence, but did not 
consider feedbacks from mortality into subsequent fire because of the limited data. Preisler et al 
(2017) worked at a finer spatial scale, considering the correlation between patches of vegetation 
affected by both morality and fire. Their limited data do not support an empirical test of the 
effect of mortality on the occurrence and size of high-severity fires.  Stephens et al (2018) also 
worked at fine spatial scales, correlating stand level mortality with subsequent burn patches in 
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and around one fire. Numerous fires interacting with post-mortality forest fuels must be 
observed before a statistical model could be estimated.  

Studies have been conducted examining the impact of tree mortality on subsequent wildfire 
severity in other ecosystems where widespread tree mortality has been occurring for longer, 
such as British Columbia and the northern U.S. Rockies (e.g., Hickes et al 2012, Harvey et al 
2014). Because their fire regimes can be very different from that of the Sierra Nevada, with 
different characteristic fire severity and different climate-fire-vegetation interactions, these 
findings may not be relevant to assessing risks in Sierra Nevada forests and should only be used 
with caution. 

Tree mortality count estimates are available from regular overflights for a limited set of years 
from the USFS Arial Detection Survey (https://www.fs.usda.gov/detail/r5/forest-
grasslandhealth/?cid=fsbdev3_046677).  These have been converted into estimated changes in 
live and dead biomass (Lara et al in press).  However, the data for either estimating a statistical 
model relating high severity burned area to antecedent mortality or parameterizing and 
validating a dynamic model will remain sparse until sufficient time has passed to observe more 
fires impinging on the footprint of the recent widespread mortality event in the Sierra Nevada.  
In the absence of hard data, this analysis engages in scenario building. We apply expert opinion 
guided by the recent studies listed above (Stephens et al 2018, Preisler et al 2017), and allow for 
wide uncertainties, to consider what the potential near term effects might be of tree mortality on 
subsequent high severity wildfire.     

B.3 Data Sources and Methods 

Fire history data for large (>400 ha) wildfires were extracted from the Monitoring Trends in Burn 
Severity database (MTBS Data Access 2009, www.mtbs.gov; accessed 12/2008 and 9/2016), and 
coded by discovery date (month, year). We used ESRI Arc Macro Language (ESRI 1999) to 
intersect burn maps (at 30 m resolution) with a 1/16th degree grid, assigning each fire to the grid 
cell where a majority of the fire’s area burned, or if multiple grid cells had similar areas burned, 
the one closest to the fire polygon centroid (Keyser and Westerling 2017). We then calculated 
area burned in patches within each fire where ninety percent or more of basal area was killed 
(BA90).  Statistical wildfire models were then estimated using historical fire and climate data 
available for 1984–2014. 

Estimates of Sierra Nevada live biomass in 2012 prior to the drought, and dead biomass post 
drought, were obtained from Tubbesing (UC Berkeley). Changes in dead biomass at 30 m 
resolution were calculated for Lara et al (in review) by combining Forest Service Aerial Detection 
Survey (ADS) data and the Landscape Ecology, Modeling, Mapping, and Analysis (LEMMA) 
team’s Gradient Nearest Neighbor (GNN) Structure Maps (Ohmann JL, et al. (2012), Ohmann JL, 
et al. (2014), US Forest Service 2017, Wittwer 2008).    

Additional vegetation characteristics data for the Sierra Nevada, in the form of fire regime 
condition class (FRCC) variables designed to measure the divergence of vegetation structure and 
composition from historical conditions (Hann et al 2008, Laverty and Williams 2000), were 
provided by the US Department of Agriculture’s Forest Service Region 5 using the same 
methodology as the LANDFIRE project (Keane et al 2007, www.landfire.gov). FRCC classes 2 
and 3 were combined (indicating ≥33% departure from historic conditions (Holsinger et al 2006, 
Keane et al 2007)) and aggregated to indicate fractional coverage of the 1/16th-degree lat/lon 
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(~6 km) grid used here. Fractional data were then normalized to provide a continuous variable 
not bounded by [0,1] as 

 

FRCC23i = log(( f23i ) / ( 1- f23i ))  

 

where f23i is the fractional vegetated area characterized as FRCC class 2 or 3 in grid cell i.  Fuels 
management scenarios were constructed by randomly converting 30 m pixels within each 
federal land management unit from FRCC classes 2 and 3 to FRCC class 1 (ie., approximating 
historical conditions prior to the era fire suppression, with more open forest canopies, shorter 
fire rotations, and less severe fire (less biomass burned and less mature tree mortality)).  
Scenarios reported here examined converting, respectively, approximately 50% and 90% (R50 
and R90 management scenarios) of the potentially treatable forest area to FRCC 1. Since the 
treatable area is far less than the total vegetated area, the treatments affect significantly less than 
50% or 90% of the vegetated area.   In practice, however, the treatments are large and at this scale 
would require substantial resources for a combination of mechanical tree removal and fires 
actively managed for fuels reduction objectives. 

Gridded downscaled climate simulations for 1950-2099 from four global climate models using 
two emissions scenarios (RCP 4.5 and 8.5, see IPCC AR5 WG1, 2013) were obtained via Scripps 
Institution of Oceanography, including global models from Centre National de Recherches 
Météorologiques (CNRM-CM5, see Voldoire et al 2011), the Canadian Centre for Climate 
Modeling and Analysis (CanESM2, see Christian et al 2010, Arora and Boer 2010), the United 
Kingdom Met Office’s Hadley Center (HadGEM2-ES, see Collins et al 2008), and the University 
of Tokyo’s Center for Climate System Research (MIROC5, see Watanabe et al 2010).   

B.4 Modeling Methods 

Similar to the approach for total burned area, BA90 area was estimated using a generalized 
linear model for a threshold value (>50 ha) of BA90 being present conditional on a 400 ha fire 
being present and on climate.  The conditional extent of BA90 area was estimated using a 
generalized Pareto distribution fit to climate and vegetation characteristics as covariates.  Model 
specifications were assessed using the Akaike Information Criterion (Akaike 1974).  The same 
suite of potential independent variables was considered, with the addition of dead biomass. 

A set of scenarios were constructed to illustrate possible influences of tree mortality on BA90 
area. Examination of the large fire record revealed that no large fires with significant BA90 area 
occurred in the record after the first year of the drought, leaving an insufficient sample to 
statistically calculate the effects of mortality on subsequent BA90 area at the spatial scale used 
here (a 1/16 degree grid).  Expert opinion on potential risks was solicited from USDA Forest 
Service Region 5 management and affiliated researchers. The result was a set of heuristics 
recommended by USFS Region 5 staff as follows: 

 

� years 0-3:  in grid cells with 50% or more mortality, increase the risk of high severity fire 
by 20, 50 and 70 percent, reflecting broad uncertainty about potential impacts.  In grid 
cells with less than 50% mortality, assume the pre-drought risk holds, due to the extreme 
uncertainty.   
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� years 4-15: in grid cells with 50% or more mortality, decrease the risk of high severity fire 
by 25%, reflecting the loss of fine canopy fuels.  

 

These rules are meant to cover the evolution of tree mortality influences on the risk of high 
severity (here BA90) wildfire.  First, that at the time of and shortly after a mortality event, fine 
canopy fuels are still present in the canopy and become increasingly desiccated (0-3 years post 
mortality). After a short time, however, these fine fuels (needles) fall from the canopy, reducing 
the risk of canopy fires that can produce high severity burns, but also increasing fine surface 
fuels for a time (4-15 years post mortality). (See Stephens et al 2018 for a more detailed 
discussion).    

The probability of high severity fire conditional on a large fire occurring is historically high 
(calculated here as greater than 50% on average), no increase in the occurrence of the threshold 
BA90 area (>50 ha) was observed during the drought, and >50 ha is also a low threshold for 
BA90 presence, so the probability of the presence/absence of >50 ha of BA90 was not adjusted in 
building the scenarios.  The effect of mortality was only modeled by adjusting the scale 
parameter for the BA90 GPD. The scale parameter for the generalized Pareto distribution fit to 
historic BA90 area was adjusted according to the heuristics described above to yield scenarios for 
a wide range of hypothesized changes in high severity burned area in response to widespread 
tree mortality.  

For each of the 106 grid points with 50% or greater mortality observed, comparisons were made 
pairing BA90 simulations for post-mortality fire risk scenarios (20%, 50% and 70% increased 
GPD scale parameters) with BA90 simulations for the baseline risk scenario for 0 - 3 and 4 - 15 
years post drought in t.tests.  

 

B.5 Results 

The best fit presence/absence model for 50 ha or more of BA90 area was a generalized linear 
model using cumulative monthly climate water deficit (CWDij), cumulative monthly actual 
evapotranspiration (AETij), cumulative water year climate water deficit (CWD0ij), and JJA 
average temperature (Tjjaij). The best fit generalized Pareto distribution for BA90 extent was a 
function of CWDij , CWD0ij ,   MAM average temperature (Tmamij),  the fraction of grid cell 
vegetated area classified in FRCC 2 and 3 (FRCC23ij), and a snapshot of live biomass per grid cell 
in 2012 (BM2012ij) (Figure B1).  The generalized Pareto model fit to these data closely tracks the 
largest observed BA90 area quantiles, which are often difficult to model due to differences in the 
processes that govern average versus extreme high severity fire extents (Figure B1). 
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Figure B1: Generalized Pareto fit to BA90 burned area and covariates: residual probability plot 
(left) and residual quantile plot (right). 

 

While the changes to fire risk imposed by the heuristics were substantial, they only applied in 
grid cells (j) where 50% or more dead biomass was observed, while the natural variability in 
high BA90 area is large. Consequently, the fractional change in BA90 area attributed to biomass 
effects here is relatively small and insignificant when considered from the perspective of the 
Sierra Nevada region as a whole:  ranging from a less than 7% increase for the 70% scenario to 
less than 1% for the 20% scenario, averaged over all four global climate models. Most of the 
effect is concentrated where the highest mortality occurred, along the western slopes of the 
central and southern Sierra Nevada (Figure B2 - B6).  However, significant t-tests for grid cells in 
these areas were no more numerous than what would be expected to be observed by chance.  In 
other words, the effects on BA90 postulated for each scenario were small compared to the 
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background variability inherent in the modeled system.  This is not surprising, given the 
extreme fat tail distributions that characterize both fire size and high severity burned area. 

 

 

Figure B2.  Cumulative drought-related dead biomass as a fraction of estimated 2012 live biomass 
(Lara et al 2018). 
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Figure B3. BA90 scenario: Average annual change in BA90 simulated with an assumed 70% 
increase in the generalized Pareto distribution scale parameter for years 0-3 post-drought.   
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Figure B4. BA90 scenario: Average annual change in BA90 simulated with an assumed 50% 
increase in the generalized Pareto distribution scale parameter for years 0-3 post-drought.   
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Figure B5. BA90 scenario: Average annual change in BA90 simulated with an assumed 20% 
increase in the generalized Pareto distribution scale parameter for years 0-3 post-drought.   
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Figure B6. BA90 scenario: Average annual change in BA90 simulated with an assumed 25% 
decrease in the generalized Pareto distribution scale parameter for years 4-15 post-drought.   

 

B.6 Discussion 

The analysis described here gives a preliminary look at postulated near term effects of tree 
mortality on BA90 burned area.  These were small compared to inherent variability in the 
system, even when assuming very large shifts in the BA90 size distribution.  This is primarily 
because the area with 50% or more mortality is concentrated over a relatively small portion of 
the Sierra Nevada.  And for forest with less than 50% mortality, there was no basis to support a 
change in the fire size distribution.   However, our modeling focused only on the effects of the 
desiccation and movement of fine canopy fuels to the surface fuel layer.  An additional 
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postulated potential effect further into the future is that there might exist a risk of mass fires 
once a substantial quantity of dead and down heavy fuels (logs) cure out and sufficient fine fuels 
grow up around them to facilitate the spread of a fire severe enough to ignite these fuels (see for 
example Stephens et al 2018).  There are no recent historical analogs for this situation that would 
provide data for this ecosystem.  Analogues might be mass fires in German and Japanese cities 
firebombed in World War II, or perhaps the cumulated slash from clear cutting in US Rocky 
Mountain forests prior to the fires of 1910.  Given the paucity of data, current models have as yet 
no basis for quantifying the risk of mass fire in the Sierra Nevada mid-century or beyond.   
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