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Abstract 



More than 70 years of fire suppression by federal land management agencies has inter-

rupted fire regimes in much of the western United States. The result of missed fire cycles 

is a buildup of both surface and canopy fuels in many forest ecosystems, increasing the 

risk of severe fire. The frequency and size of fires has increased in recent decades, as 

has the area burned with high severity in some ecosystems. A number of studies have 

examined controls on high severity fire occurrence, but none have yet determined what 

controls the extent of high severity fire. We developed statistical models predicting high 

severity area burned for the western United States and three sub-regions—the Northern 

Rocky Mountains, Sierra Nevada Mountains, and Southwest. A simple model with maxi-

mum temperature the month of fire, annual normalized moisture deficit and location ex-

plains area burned in high severity fire in our west-wide model, with the exception of 

years with especially large areas burned with high severity fire: 1988, 2002. With respect 

to mitigation or management of high severity fire, understanding what drives extreme fire 

years is critical. For the sub-regional models, topography, spring temperature and snow-

pack condition, and vegetation condition class variables improved our prediction of high 

severity burned area in extreme fire years. Fire year climate is critical to predicting area 

burned in high severity fire, especially in extreme fire years. If a goal of management is 

to mitigate extreme fire events in terms of fire severity, then knowledge of fire year cli-

mate and its effect on fire severity is essential. The models developed here are ideal for 

scenario analyses and impact assessments—e.g. to understand the impact of fuels 

management and/or climate change on potential high severity area burned. 

1. Introduction 

More than 70 years of fire suppression by federal land management agencies has inter-

rupted fire regimes in parts of the western United States (US). Many forest types that 

historically burned frequently have undergone significant changes in species composi-

tion and have heavy accumulations of surface and canopy fuels, putting them at risk for 



severe fires (Agee et al. 1978, Agee and Skinner 2005, McKelvey et al. 1996, Keane et 

al. 2002). In testimony to the Natural Disasters Roundtable, Cleaves testified that of 

~168 million hectares of fire adapted ecosystems in the coterminous US, more than 29 

million are considered to be a high risk to human and ecosystem values due to an ac-

cumulation of fuels and risk of high severity fire, and more than 57 million are considered 

a moderate risk (2001). A high severity fire is exemplified by a stand replacing fire where 

most surface and crown fuels are burned and most over-story vegetation is killed.  

Both the frequency and size of large wildfires have increased in the past 30 years in the 

western US (Dennison et al. 2014, Littell et al. 2009, Miller et al. 2009, Stephens and 

Ruth 2005, Westerling et al. 2006, Westerling 2016) as has the length of the fire season  

(Westerling et al. 2006, Jolly et al. 2015, Westerling, 2016). Climate affects area burned 

through both production of biomass and fuels, enhanced after wet winters and springs, 

and the drying of fuels, enhanced by drought. Many studies predict continued increases 

in large fire occurrence with climate change in western US forests (Spracklen et al. 

2009, Littell et al. 2010, National Research Council 2011, Westerling et al. 2011a,b, 

Kitzberger et al. 2017). Recent work estimates at least half of observed trends in forest 

wildfire may be due to climate change (Abatzoglou and Williams, 2016). 



Area burned in high severity fire has been correlated to total area burned in some re-

gions, and has seen a concomitant increase with increasing fire size (Cansler and 

Mckenzie 2014, Dillon et al. 2011, Miller et al. 2009, Miller and Safford 2012, Abatzoglou 

et al. 2017). In the North Cascade Range, Cansler and McKenzie found that both total 

high severity area and patch size increased with total burned area (2014). Bottom-up 

controls, such as topography and vegetation, appeared to mediate this fire area-burn 

severity area relationship in some ecosystems with historical low-moderate severity fire 

regimes (Cansler and McKenzie 2014).   

In the Sierra Nevada, CA/NV, Miller et al. found that fire size (annual mean and maxi-

mum) and total area burned increased in the period 1984-2006, and are now above pre-

suppression levels (2009). They also found that the proportion of high severity, stand-

replacing fires increased (Miller et. al 2009). The proportional increase in high severity 

fires was not uniform, but was concentrated in low to mid-elevation forest types where 

25-40% of total burned area was classed as high severity. High severity fires are not 

characteristic of these forest types, indicating that the current fire regime in these 

ecosystems is outside of historical natural conditions (Agee et. al 1978, Agee 1998, 

Collins et. al 2009, Moody et al. 2006, Parsons and DeBenedetti 1979).  

Previous work (Keyser and Westerling 2017) indicates that fire year climate is critical to 

accurately predicting severe fire occurrence, especially for very large fires.   While many 

studies have now sought to explain what controls the occurrence of high severity fire at 

the individual fire to regional scales, few have looked at what controls the scale at which 

high severity fire occurs. Abatzoglou et al. (2017) found weak to moderate correlations 

between metrics of fuel aridity and regional burn severity. The ability to predict the 

amount of area that is at risk of burning in high severity fire and whether this is changing 

would improve the implementation of management decisions to mitigate fires with severi-



ty that is uncharacteristic in size or for the ecosystem in which it occurs. In this paper, we 

seek to answer the following questions:  

Given that a large fire (> 400 hectares) occurs,  

1. What is the probability that > 200 hectares will burn in high severity? 

2. What are the total hectares burned in high severity? 

3. What variables determine area burned in high severity? 

2. Methods 

2.1 Spatial and Temporal Domain of Analysis 

As with the presence/absence modeling in Keyser and Westerling, our modeling domain 

is a 12km x 12km latitude/longitude grid (2017). We developed models for eleven con-

tiguous Western US states as a whole and three smaller regions to determine if we 

could improve model performance in years with very large high severity area burned in: 

the Sierra Nevada Mountains (SN), the Northern Rocky Mountains (NR), and mountains 

in Arizona and New Mexico (hereafter Southwest, SW) (Figure 1).  The data used vary in 

spatial resolution from 30m to 12km; to maintain information content of the higher resolu-

tion data, we aggregated it to the 12km modeling grid by calculating fractional area of 

each variable.  



The temporal domain of analysis is determined by the availability of burn severity data, 

which is produced with Landsat imagery. Our models are built on data from 1984-2006, 

the latest year of completed burn severity mapping when we started our project. We 

have since obtained data from 2007-2014; trends in fire severity metrics are calculated 

for 1984-2014. Both our hydroclimate predictor variables and dates within the burn 

severity database are monthly. We modeled the monthly probability of high severity fire 

area over 200 hectares and total high severity burned area in the Western US and 

summed to annual values from 1984-2006. The ignition date of the fire is provided with 

the burn severity data, but there is no data on length of fire activity; we used the ignition 

month to link our hydroclimate predictor variables. Our predictors represent the month 

that the fire started, but may not represent the exact conditions when high severity fire 

occurred as many large fires burn for more than one month. Any climatic variability that 

might drive fire behavior, and thus severity, in a fire burning outside the month of discov-

ery will not be captured in our data.  

2.2 Burn Severity Data 

We downloaded fire severity data from the Monitoring Trends in Burn Severity (MTBS) 

project website and used the classified fire severity images to build our models (Eiden-

shink et al. 2007, http://www.mtbs.gov). The classified images threshold the continuous 

differenced normalized burn ratio into five severity classes: unburned to low severity, low 

severity, moderate severity, high severity, increased greenness, For this analysis we se-

lected only forest fires, defined as a fire in which at least 10% of the total burned area 

was in forest vegetation, following USFS classification standards (Brohman and Bryant 

2005). We used data included with the MTBS data that intersects fire severity pixels with 

Ecological Systems classifications, based on the National Landcover Data Classification 



(http://www.mtbs.gov/ProjectDocsAndPowerpoints/projectplan.html; 29 January 2016, 

Homer et al. 2007). We calculated the fractional fire area, for all classes, in the following 

broad classifications: barren, developed, forest, herbaceous natural, herbaceous plant-

ed, shrubland, water, wetlands. We dropped 41 fires from our classified burn severity 

data that did not have a matching record in the ancillary vegetation/severity database. Of 

a total 4591 fire records in the MTBS burn severity and vegetation database file, we re-

tained 1871 fires that were a minimum of 400 hectares, had forest cover ≥ 10% and had 

matching records in the classified severity and severity by vegetation database files. We 

intersected the burn severity images with the 12km grid; if a fire intersected more than 

one modeling pixel, we assigned it to the pixel containing the majority of the fire area.   

We set the presence of high severity fire hectares > 200 as the threshold for this analy-

sis. Of the 1871 forest fires, 815 exceeded the 200 hectare high severity threshold. The 

200 hectare threshold was selected for the generalized Pareto distribution models for 

area exceeding that threshold using graphical analysis to fall within the range where the 

sample mean excess function is a linear function of the threshold value (see Coles 2001; 

Holmes et al. 2008).   

2.3 Landscape Data 

Topographic variables derived from the GTOPO30 global 30 Arc Second (1km) Elevation 

Data Set data were aggregated to our 12km modeling resolution. These were accessed 

online from the North American Land Data Assimilation System (LDAS) (http://ldas.gs-

fc.nasa.gov, Mitchell et al. 2004). The variables include minimum, maximum, mean and 

standard deviation of elevation within each modeling pixel. Mean slope and aspect are 

also included. The standard deviation of elevation reflects the topographic complexity 

within each modeling pixel. We also created a two dimensional surface spline of latitude 



and longitude to use as a smoothed spatial dummy variable for site-specific characteris-

tics (as in Preisler and Westerling 2007).  

We aggregated fire regime condition class (FRCC) data from the LANDFIRE project 

(accessed online at http://www.landfire.gov) as the fractional coverage of each class 

within the 12km modeling pixels; we then normalized the FRCC fractions using the log 

function. Fire regime condition class is a widely used metric to identify the impact of land 

management decisions on ecosystems. It quantifies differences in current vegetation 

composition from the range of variability under historical natural fire regimes; the depar-

ture value is a continuous value 0-100 (Hann 2004, Laverty and Williams 2000). The his-

torical range of variability is determined using the LANDSUM disturbance and succes-

sion model run with historic fire regimes (Keane et al. 2006, Pratt et al. 2006). The 

LANDFIRE departure metric refers only to vegetation composition and does not incorpo-

rate changes in fire regime. The departure values are categorized into three FRCC 

classes: FRCC1 is within historical range (departure <33%); FRCC2 is moderately de-

parted (33% ≥ departure < 66%); FRCC3 is highly departed, or outside the historical 

range of variability (departure ≥ 67%) (Holsinger et al. 2006, Keane et al. 2007). We are 

using the FRCC as a proxy variable to reflect the effects of fire suppression.  

2.4 Climate and Hydrologic Data 

We obtained a suite of hydroclimate predictor variables output from the Variable Infiltra-

tion Capacity model (VIC) and the gridded climate data used to force it (Liang et al. 

1994). The VIC model calculates surface and energy water balances and is designed for 

large-scale applications; it has a simplified soil-vegetation-atmosphere-transfer scheme 

with a two-layer soil module. A unique feature of VIC is its ability to account for sub-grid 

scale variability in vegetation characteristics; it calculates evapotranspiration from the 



vegetation and evaporation from bare soil surfaces at a daily time step for each vegeta-

tion class in the modeling grid cell and returns a weighted area sum. Our VIC data was 

produced with gridded daily climate at ~12km (Mauer et al. 2002) and a 1km vegetation 

layer from the North American Land Data Assimilation System produced by the Universi-

ty of Maryland (http://ldas.gsfc.nasa.gov, Mitchell et al. 2004).  The vegetation layer is 

composed of coarse plant functional types, e.g. Evergreen needle leaf forest, deciduous 

broadleaf forest.  

The VIC output is returned as monthly averages from 1915-present and includes: tem-

perature extrema and average (Tmax, Tmin, Tave), precipitation (PPT), relative humidity 

(Rh), snow water equivalent (SWQ), evapotranspiration (ET), moisture deficit (MD), and 

antecedent moisture deficit derivatives, e.g. 0-12 month prior (Westerling et al. 2009). 

We calculated 30-year means and standard deviations for 1961-1990 for Tave, PPT, cu-

mulative MD, and ET. Month of fire and cumulative annual MD variables were normal-

ized relative to the 1961-1990 average and standard deviation. 

2.5 Logistic Regression Modeling  

We defined the presence of high severity fire for this analysis as 200 hectares (as 

above). We used the Random Forest package in R to predict both the fraction of high 

severity fire (high severity hectares divided by total fire hectares) and high severity 

burned area (hectares classified as high severity) (Liaw and Wiener 2002, R Core Team 

2015). We used the top 10-20 predictors from Random Forest as an initial predictor set 

to perform logistic regression analysis on presence of high severity fire >200 hectares. 

The model building and evaluation was iterative starting with a core set of variables and 



removing insignificant variables and evaluating changes in the AIC until we achieved the 

most parsimonious model with the best explanatory power. 

To model the probability of high severity fire presence, we use the logged odds, or logit:  

Logit P200 = ln(P200 / (1- P200)) = β  × [1 + Xj] 

Where P200 is the probability of a fire having >200 hectares classified as high severity; 

note that implicit in this is that a fire of at least 400 hectares burned. The Logit P200 is the 

logarithm of the odds ratio P200 / (1 - P200)); β is a vector of maximum likelihood estimated 

parameters from the data; Xj is the set of independent predictor variables best fit to the 

model. The threshold of 200 hectares to determine presence was chosen as it is the 

threshold chosen for the generalized Pareto distribution model; to predict area burned 

over our threshold of 200 hectares, we need first to know the probability that this many 

hectares would burn.  

We use the Aikake Information Criterion (AIC) to evaluate model performance (Aikake, 

1974, 1981).  

AIC = -2(ln(likelihood)) + 2N 

where likelihood is the probability of the data given a model and N is the number of pa-

rameters in the model (predictors and intercept). The best model is a model that bal-

ances model fit to the data with number of parameters. The AIC penalizes models for 

excess predictive parameters. The AICs are evaluated as the difference between indi-

vidual model AIC and the minimum AIC from all models. There is no test to compare 

AICs, but a general rule of thumb is that if ΔAIC < 2, the models are not significantly dif-

ferent in their skill; ΔAIC > 10 is a significant difference in model skill (Burnham and An-



derson 2004, Haire and McGarigal 2010). Once we chose the model with the lowest AIC 

vs. number of parameters, we performed a leave one out cross-validation. 

  

2.6 Generalized Pareto Distribution Modeling 

We estimated generalized Pareto distributions (GPD) for fire severity area burned with a 

threshold value of 200 hectares and used these to model the log of area burned in high 

severity fire. The GPD is a points over threshold model. The choice of threshold was 

made by evaluating a mean residual life (or sample mean excess function) plot. A 

threshold was chosen above which the mean residual life plot was linear, meaning that 

the GPD is providing a valid approximation of the distribution (Coles, 2001). The GPD 

can be estimated with and without covariates. Generally, if the data vary spatially or 

temporally, the inclusion of covariates is necessary to obtain a good model fit (Coles, 

2001). We estimated GPDs with and without covariates using the ismev function in R, 

initializing with the same set of predictors used in the logistic regression model. Model 

specifications were evaluated with the AIC (Aikake, 1974, 1981).  

   

2.7 West-wide Modeling 

In our first stage of model estimation, we used all forest fires in the western US. Our 

success in creating models of high severity fire occurrence across the western US led us 

to first estimate GPDs for the entire region (Keyser and Westerling 2017). These models 

performed well, with the exception of years with extremely large areas burned in high 

severity fire: 1988, 2002. The utility of our models lies in the ability to understand the 

conditions that lead to exceptional years in terms of high severity area burned. The 

years where our model performed poorly are years that saw regional differences in ex-

treme fire activity, indicating that there are unique regional-scale controls on high severi-



ty fire area burned across western US forests in these years. We hypothesize that these 

are related to vegetation-mediated differences in the climate sensitivity of regional fire 

regimes that are not fully captured by the covariates we used. Previous work indicated 

that high severity fire occurrence requires more extreme climate conditions in regions 

where high severity fire occurrence is highly variable, such as California and the South-

west, than in areas dominated by cool moist forests with high severity fire regimes 

(Keyser and Westerling 2017). We chose the Northern Rocky Mountains, Sierra Nevada 

Mountains, and Southwest forest areas to generate regional GPD models of high severi-

ty area burned in an attempt to improve model performance in extreme years. 

2.8 Regional Modeling 

The Northern Rocky Mountain region experienced very large high severity area burned 

in the years 1988 and 2000; forests of the Southwest experienced the same in 2002, 

while 1987 and 2002 were high in the Sierra Nevada. We defined the Northern Rocky 

Mountains as area in Montana, Idaho, and Wyoming bound by latitudes 

(41.1875,48.9375) and longitudes (-108.675, -104.1875). We defined the Sierra Nevada 

Mountains using latitude (37.0,40.5) and longitude (-122, -117.5) within California. For 

the Southwest, we took all forest fires in Arizona and New Mexico (Figure 1). 

3. Results   

3.1 Trends in high severity burned area 

High severity burned area is positively correlated to total burned area in the WUS and in 

individual states; the fraction of high severity burned area has weak to no correlation to 

total burned area (Table 1, Figure 2).  We looked for 1984-2014 trends in both high 



severity burned area and in the number of fires with >200 hectares high severity for the 

western US as a whole, for individual states, for our three modeling regions, and for 

months in the fire season. There is no trend in total annual high severity hectares burned 

from 1984-2014 (Table 2). There was, though, a corresponding trend in the number of 

fires with high severity hectares > 200.  

Both the WUS and Wyoming experienced significant trends in the annual number of fires 

with high severity hectares > 200 from 1984-2014 (p < 0.05, Figures 3 and 4, Table 2). 

This increase is occurring during the summer fire season in June, July, and August, all 

with significant increases in the number of high severity fires (Figure 5).  

For the three regions we modeled, there were not significant trends in high severity 

burned area or number of high severity fires. The Sierra Nevada did have a significant 

increase in the annual minimum fraction of high severity burned area; this means that 

there are now fewer years without any severe fire (Figure 5).  

3.2 West-wide Models 

3.2.1 Logistic regression of high severity occurrence >200 hectares 

There are 815 forest fires that meet the threshold of 200 hectares burned in high severi-

ty. A combination of vegetation condition class, location, temperature and moisture deficit 

variables best explain presence of high severity fire over our threshold (Table 4). The 

final model fits the observations well, Figure 7 (r = 0.95, p-value < 0.001), and has the 

form: 

Logit(P200) = β × [1 + Tavg.mu + Tavg.sd + Tmax + 



MD10 + MD00n + FRCC3 + X(Lat, Lon)] 

where Tavg.mu and Tavg.sd are the 1961-1990 mean and standard deviation, respec-

tively of annual average temperature; Tmax is maximum temperature the month of fire 

occurrence, MD10 is July moisture deficit of the year of fire, MD00n is normalized cumu-

lative annual moisture deficit in the year of fire; FRCC3 is fractional area in fire regime 

condition class 3; and X() is a matrix describing a west-wide two-dimensional basis 

spline. The surface spline of latitude and longitude was important for predicting occur-

rence of high severity fire for all west-wide and regional models.  

3.2.2 Generalized Pareto distribution modeling 

The addition of covariates to the stationary generalized Pareto distribution (GPD) model 

significantly improved model fit (Figure 8a). A fairly simple model with maximum temper-

ature the month of fire, cumulative annual moisture deficit and location explains area 

burned in high severity fire in most years (Table 4).  

Our west-wide model performs well with the exception of years with especially large ar-

eas burned with high severity fire: 1988, 2002. In the Northern Rocky Mountains, 1988 

experienced large and severe fire in the greater Yellowstone region; forests of the 

Southwest and Sierra Nevada experienced large and severe burns in 2002. In these 

years, our model greatly under-predicts the area burned in high severity fire; regional 

GPD models identified location specific covariates that best explained total area burned 

in high severity fire in these extreme years.  

3.3 Regional Models  



3.3.1 Logistic regression of high severity occurrence > 200 hectares 

Regional models all performed well with highly significant correlations between predicted 

and observed high severity fire occurrence (Figure 9). The primary difference in regional 

versus west-wide occurrence modeling is the importance of topographic and climate 

variables in the final regional models (Table 4). In the Northern Rocky Mountains (NRM), 

minimum and mean elevation in the modeling pixel were important  

(r = 0.94, p-value < 0.001); maximum elevation was important for the Southwest (SW,  

r = 0.84, p-value < 0.001), and average slope was important in the Sierra Nevada (SN,  

r = 0.79, p-value < 0.001). The NRM was the only region for which vegetation condition 

class (FRCC) was not important in the best-fit occurrence models.  

3.3.2 Generalized Pareto distribution modeling 

Our regional models explained extreme years with large areas burned in high severity, 

each with unique covariates. For the NRM, the following covariates were important: min-

imum and mean elevation, average spring temperature, 1961-1990 average tempera-

ture, maximum temperature in the month of fire occurrence, relative humidity, March 

snow water equivalent, and cumulative annual moisture deficit. When these variables 

are included, we achieve much better predictions of area burned for 1988 and 2000, the 

years with largest areas burned in high severity fire in this region (Figure 8b, Table 4).   

For Southwest forests, 2002 was an extreme year with respect to area burned in high 

severity fire (224023 hectares vs. a 24 year mean of 19577 hectares; the next highest 

value is 46380 hectares). Our regional model slightly under-predicts 2002, but the value 

falls within the range of 1000 random draws from the GPD (Figure 8c, Table 4). Maxi-



mum elevation, average spring temperature, relative humidity, and moisture deficit in the 

month of fire occurrence were significant covariates for area burned in high severity.  

The best GPD model for the Sierra Nevada Mountains included climate, topographic, 

and vegetation condition covariates (Figure 8d, Table 4). The variability in long term 

moisture deficit and average temperature, slope, and fraction in FRCC1 were included. 

Annual climate variables of maximum temperature the month of fire, annual average 

spring temperature, April snow water equivalent, and cumulative water year moisture 

deficit were also included. The years 1987 and 2002 account for most of the area burned 

in high severity. We were not able to fit a model that captured both years well. In 1987, 

two weeks of dry lightning storms at the end of summer resulted in a record number of 

fire starts and all of the high severity fires in our data started in the first three days of this 

period (http://www.fire.ca.govdownloads/redbooks//1987_BW.pdf). In 2002, almost all of 

the hectares burned in high severity (37642 of 47064 total hectares) in our dataset are 

from one fire, the McNally fire, that started as a result of an illegal campfire. Without the 

McNally fire, 2002 would not have been a remarkable year in terms of high severity 

hectares burned, and we were not able to fit any model that matched this year well, 

though our model does fit well to the other two fires that burned in 2002 (results not 

shown). 

4. Discussion 

4.1 Trends in high severity burned area 

Our finding that high severity burned area is positively correlated to total burned area is 

in agreement with other smaller scale studies (Cansler and McKenzie, 2014, Dillon et al. 

2011). While larger fires are associated with more hectares burned in high severity, this 



does not necessarily mean that larger fires are more severe as there is not a corre-

sponding association with the proportion of total fire area burned in high severity. The 

increases in large fire occurrence and area burned that have been observed and are 

predicted with a changing climate will likely result in increases in total high severity fire 

area in the future (Littell et al. 2009, Stephens 2005, Westerling et al. 2006, 2009, West-

erling 2016).  

Our record of high severity fire is likely too short to record a significant trend in high 

severity burned hectares. Without a longer record of severity, we can’t with certainty say 

whether the amount of severity has increased significantly. For many ecosystems in the 

WUS, enough fire cycles may have been missed due to fire suppression by the time our 

fire severity record began to impact fuel availability and severity, while others would not 

have missed any. Our only sub-setting of fires was by relatively large sub-regions that 

include many forest types and historical fire regimes. It is possible that individual forest 

types (i.e. those with short fire return intervals) may have experienced an increase in 

high severity area burned, as recorded in California and Southwest forests, but these 

increases are not evident when all forest fires are examined together (Dillon et al. 2011, 

Miller and Safford 2012). While we did not find a significant trend in total high severity 

hectares, there was a significant west-wide trend in number of fires that meet our high 

severity threshold.  

  

The significant trend in the number of fires meeting our severity threshold indicates that 

there is an overall increase in the number of large severe fires since 1984. This is likely 

a result of the aforementioned correlation between area burned and high severity area 

burned and the observed increases in number of large fires in recent decades (Dennison 

et al. 2014, Littell et al. 2009, Westerling et al. 2006, Westerling 2016). While there is 

evidence for an increase in the length of the fire season in the western US (Jolly et al. 



2015, Westerling et al. 2006, Westerling 2016), our increases in high severity fire occur-

rence occur in the middle of the fire season, June-August, indicating that the increases 

are likely due to changes in burning conditions or fuels rather than in the lengthening of 

the fire season (Figure 5).  

4.2 Models of high severity burned area 

Our west-wide models for both presence of high severity fire and log area burned in high 

severity fire have three classes of explanatory variables—biophysical setting, climate, 

and vegetation condition class. The spline of latitude and longitude used here is substi-

tuting for the spline of MD/ET that we used in previous work (Keyser and Westerling 

2017). The MD/ET spline is a proxy for biological site conditions suitable for plant growth 

(Stephenson 1998).  We substituted the latitude and longitude spline as we would like 

these models to be readily usable with GCM model output; it also performed better than 

the MD/ET spline. The importance of the normalized fraction of FRCC in our model indi-

cates that historical management of fire, primarily as fire suppression, has affected the 

probability that high severity fire will occur in the presence of a large fire. Last, the max-

imum temperature and normalized moisture deficit in the month of fire occurrence are 

important, especially for predicting area burned in high severity fire. The importance of 

within-year climate variables for predicting high severity fire area in these models is sup-

ported by the results from Keyser and Westerling (2017); when we removed within year 

variables, our ability to predict fires with a high fraction of high severity burned area was 

limited.  

While the west-wide model did well in most years, and the predictor variables are sup-

ported by our previous research, the relatively simple model did not explain years with 

very large high severity burned area. With respect to mitigation or management of high 



severity fire, understanding what drives extreme fire years is critical. Many variables that 

were important west-wide were also important in the regional models; in addition to the 

spline variable, topographic position variables were important biophysical setting predic-

tors in the regional models. 

  

Topographic position is an important determinant of the overall energy balance of a site, 

impacting vegetation distribution and productivity and, concomitantly, fuel availability. 

High elevation sites, especially those with north aspects, support cool moist forests that 

typically burn infrequently, but with high severity. In contrast, low elevation sites with 

south aspects will support drier open forests that burn more frequently. The importance 

of topographic parameters in our regional models is supported by smaller scale studies. 

Elevation was important in the Southwest and Northern Rocky Mountain regions in both 

logistic regression and GPD models. Previous regional studies from these areas also 

found topographic variables to be important.  Dillon et al. created predictive models for 

the Northern Rocky Mountains and Southwest and found that topographic position was a 

dominant predictor of fire severity occurrence and was more important than climate vari-

ables (2011). Birch et al. also looked at fire severity in Idaho and Montana (NRM) and 

found that topography and existing vegetation were more important than climate in pre-

dicting burn severity (2015).  Both of these studies used finer scale and more complex 

topographic variables nearer the scale of the burn severity data, which could explain the 

difference in importance. Including climate variables improved the Dillon et al. models, 

especially in the Southwest (2011). 

Fire year climate variables were more important in predicting area burned in high severi-

ty fire (GPD models) than in occurrence of high severity over a threshold. The Northern 

Rocky Mountains and Sierra Nevada Mountains had more complex models than the 

Southwest. This is likely because these two regions support a broader range of ecosys-



tems and historic fire regimes. Models for both regions include seasonal and month of 

fire climate variables. Average spring temperature was important in all regions. Warmer 

springs lead to earlier snowmelt and can lead to an earlier start of the fire season, espe-

cially in dry years. Snow water equivalent in the spring was also important for the NR 

and SN; snowmelt provides the majority of growing season moisture available for plant 

growth in these regions. Years with earlier snowmelt and/or less snowpack will impact 

fuel quantity and flammability. Less available growing season moisture will result in lower 

production of fine fuel biomass and increased flammability due to fuel drying. In addition 

to temperature and moisture conditions antecedent to the fire season, the maximum 

temperature and relative humidity in the month of fire (NR only) were important for pre-

dicting area burned in high severity fire. The combination of less seasonal moisture 

availability and hot, dry conditions at the time of ignition further increases flammability 

and risk for severe fire. 

For the Southwest, area burned in high severity is best explained with average spring 

temperature and month of fire relative humidity and normalized moisture deficit. Holden 

et al. found that fire season precipitation patterns influence fire severity in the Gila 

Wilderness, NM (2007).  The climate of this region is monsoonal, with much of the pre-

cipitation occurring during the growing season. Southwest climate is also strongly im-

pacted by the El Nino Southern Oscillation (ENSO); large fire years correspond to high 

phase ENSO (La Nina) and spring drought conditions. The climate conditions that pro-

duce large fires are also important for creating conditions conducive to severe fires via 

increasing the flammability of vegetation and fuels.  

We expected that fire regime condition class would be an important predictor of high 

severity fire. While it was important in the west-wide logistic regression model, it wasn’t 

consistently important in the GPD or regional models. In forested ecosystems, FRCC 



indicates how departed the current vegetation is from what would be expected under a 

historical fire regime. Areas in the highly departed condition class 3 should burn in higher 

severity given a buildup in fuels and changes in species composition due to fire sup-

pression. The fraction of FRCC3 was important only in the Southwest forests, for both 

logistic regression and GPD models. The historic fire regime in many Southwest forests 

was one of frequent low severity fires; the importance of FRCC3 in these models is likely 

capturing the impact of suppression (Covington et al. 1997,Swetnam and Baisan 1996). 

In the Sierra Nevada, FRCC1 was important for both models, but FRCC3 was not impor-

tant. Substituting FRCC3 and FRCC2+3 into our SNC model resulted in decreased 

model performance as evaluated with AIC and the variable was not significant. 

  

The Sierra Nevada forests are dominated historically by a mixed severity fire regime. 

Studies have shown an increase in fire severity in some mixed conifer forests (fuel limit-

ed fire regimes) over the period of record studied here; they did not find the same in cli-

mate limited fire regimes (Miller and Safford 2012, Steel et al. 2015). Fire severity in-

creased in areas that experienced increased time since fire due to fire suppression, as 

we would expect, in the fuel limited forests in the Sierra Nevada. Collins et al. also found 

that time since fire was important in predicting fire severity in the Sierra (2007, 2009). 

With quantitative evidence that fire frequency is important in controlling severity in fuel 

limited ecosystems, we would expect that FRCC would be a significant predictor as a 

proxy for fuel buildup due to fire suppression. Perhaps the distribution of FRCC classes 

in this region is such that FRCC1 better captures fire severity here. A limitation to our 

use of FRCC is that our modeling pixels are very large and we have calculated the frac-

tion of each severity class in these to maintain as much information as possible. Howev-

er, the FRCC fractions don’t necessarily reflect the exact FRCC fraction within any given 

fire perimeter. Instead, they are an indication of fuel conditions proximate to the ignition 

site of a fire.  



4.3 Climate Change and High Severity Burned Area 

Climate change will create warmer conditions over the western US, while precipitation 

changes will be more variable. The Southwest is projected to be both warmer and drier, 

with increasing drought severity (Cayan et al. 2013). The Sierra Nevada will be very 

sensitive to changes in the timing of snowmelt due to warming temperatures, regardless 

of precipitation changes, and is projected to be drier overall (Cayan et al. 2013). The 

Northern Rockies are likely to be warmer and drier (Westerling et al. 2011a). The impor-

tance of annual moisture deficit, monthly maximum temperature, spring temperature and 

snow water equivalent in our regional models of high severity area burned indicate that 

there could be more extreme fire years in the future. The combination of our predictors 

being more likely and the increase in large fires will likely be and increase in extreme fire 

years in terms of size and severity.  

The length of the fire season (Westerling et al. 2006, Jolly et al. 2015, Westerling, 2016) 

and large fire occurrence have increased over the past three decades (Dennison et al. 

2014, Littell et al. 2009, Miller et al. 2009, Stephens and Ruth 2005, Westerling et al. 

2006, Westerling 2016). Our models are conditional on large fires burning, and many 

studies predict continued increases in area burned or large fire occurrence with climate 

change in the western US (Westerling and Bryant 2008, Spracklen et al. 2009, Littell et 

al. 2010, National Research Council 2011, Westerling et al. 2011a,b, Kitzberger et al. 

2017).  

4.4 Implications for Forest Management 

Forest management plans need to incorporate climate change, and models like ours are 

well suited to impact assessment and scenario analysis. The combination of climate and 



vegetation variables in our model allows us to examine the separate and interactive ef-

fects of climate and fuels management scenarios. Most of the variables that were impor-

tant in the best-fit models are readily available, meaning that we can simulate how high 

severity occurrence and extent might respond to a changing climate. Given projected 

future changes of the climate variables in our model (warmer and drier on average), it is 

likely that high severity area burned will increase unless fuel availability and structure 

become a constraint (Cayan et al. 2013, Kitzberger et al. 2017, Westerling et al. 2011a). 

The spatial distribution of changes in high severity area will be variable and dependent 

on whether the historical fire regime was more fuel- (Sierra Nevada mixed conifer 

forests) or climate-limited (Northern Rocky Mountain cool moist forests). Our models can 

be used to inform managers when and where these increases are most probable, and 

what the near-term magnitude of change is likely to be. 

While climate affects both fuel availability and flammability, past forest management has 

also affected fuel availability in many western forest ecosystems. For regions where fire 

regime condition class was an important predictor of high severity area burned, we can 

explore fuels management scenarios with our models to evaluate their potential for miti-

gating high severity area burned. In addition, the experimental work presented here 

could be extended to incorporate other data characterizing fuels conditions where these 

are available. Krofcheck et al. used the probability of high severity fire to derive fuels 

treatment scenarios in a spatial, process modeling framework to evaluate the effects of 

targeted fuels management on Sierra Nevada forest carbon sequestration and resilience 

(2018). Similarly, we have looked at the potential for fuels treatments to mitigate high 

severity area burned, and resulting impacts to spotted owl (Strix occidentalis) habitat, in 

the Sierra Nevada in a changing climate (Keyser, et al. 2017).  Westerling (2018 in re-

view) applies this modeling methodology to explore the effects of scenarios for the im-

pact of recent drought-related mortality in Sierra Nevada forests on high severity fire 



over the next couple of decades.  Modeling and scenario analysis studies like these can 

improve our understanding of how changing climate and fuels might interact to affect 

area burned in high severity across a landscape and allow managers to target expensive 

fuel treatments to address multiple objectives, while accounting for a changing climate. 

5. Conclusions 

Based on this and our previous work (Keyser and Westerling 2017), we conclude that 

fire year climate is critical to predicting area burned in high severity fire, especially in ex-

treme fire years. The importance of climate versus vegetation type varies considerably 

across western US forests, with climate playing a greater role in mixed severity fire 

regimes such as mid-elevation Sierra Nevada forests. Accurately predicting high severity 

area burned in extreme fire years requires developing regional models that reflect vary-

ing fire-climate-vegetation dynamics across different forest types.  

We were deliberate in building our models with predictor variables that are readily avail-

able to facilitate their utility to both researchers and managers. With a very low computa-

tional cost, we can estimate the probability and area of high severity fire for multiple 

western US landscapes. Models like these are ideal for scenario analyses, such as: de-

veloping adaptive management strategies (e.g. Keyser et al. 2017, Krofcheck et al. 

2018), for resource planning, and climate impact assessment (e.g. Westerling, Bryant, et 

al. 2009, 2011b). 
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Tables 

Table 1. Pearson’s correlation coefficients for high severity hectares burned and fraction 
of high severity hectares burned to total fire hectares. * p values < 0.05. 

                  %  



Table 2. Results from trend analysis of total annual high severity hectares burned and 
annual count of fires with high severity hectares > 200 (Count) for the period 1984-2014. 
* p <0.05.  We looked for trends in all forest fires in the western US and for trends in for-
est fires by state. Standard Error values are in parentheses. 

!  



Table 3. Results from trend analysis of total annual high severity hectares burned and 
annual count of fires with high severity hectares > 200 (Count) for the period 1984-2014. 
*p <0.05.  We looked for trends in all forest fires in the western US and for trends in for-
est fires by modeled sub-region. Standard Error values are in parentheses. 
   

!  



Table 4. The final predictor variables for the logistic regression (presence/absence) and 
generalized Pareto distribution 
(GPD) models for the western US and three sub-regions. 

%  



Figures 

!  
Figure 1. Fire perimeters of large fires 1984-2006.  Forested areas are green. Three 
model development sub-regions are outlined: the Northern Rocky Mountains (MT, ID, 
WY), the Sierra Nevada Mountains (CA), the Southwest (AZ, NM).    



!  

Figure 2. Total area burned vs. high severity area burned for all fires in the western US, 
1984-2014. Blue line is linear model fit to the data.  



!  
Figure 3. Annual number of fires with high severity area exceeding the 200 hectare 
threshold for 1984-2014 for all fires in the western US.  The blue line is a fit of the statis-
tically significant trend in number of high severity fires.  



!  
Figure 4. Frequency of fires above and below our 200 hectare threshold for each state. 
Green bars are the annual number of large fires with no presence of high severity fire; 
purple bars are the annual number of large fires classified as high severity, i.e. high 
severity hectares exceeding the 200 hectare threshold.  



!  

Figure 5 Frequency of fires by severity class for May (5) – October (10). Green bars are 
the annual number of large fires with no presence of high severity fire; purple bars are 
the annual number of fires classified as high severity, with high severity hectares > 200 
hectare threshold. June, July, and August all experienced statistically significant increas-
es in number of high severity fires from 1984-2014 (p = 0.015, p=0.043, p=0.057, re-
spectively). 



!  

Figure 6. Sierra Nevada annual minimum high severity fraction for years 1984-2014 with 
trend line in blue.  
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Figure 7. a) Probability of occurrence of high severity fire >200 hectares vs. observed frac-
tion from logistic regression analysis for the Western US. b) Predicted vs. observed annual 
number of fires meeting threshold of 200 hectares. 
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Figure 8. Observed high severity hectares burned (line) versus 1000 simulations generated 
with a generalized Pareto Distribution with covariates for a) the Western United States, b) 
the Northern Rocky Mountains, c) the US Southwest, d) the Sierra Nevada Mountains. De-
veloping regional models improved predictions for years with regionally specific high severity 
fire occurrence: 1988 and 2000 for the Northern Rocky Mountains, 2002 for the Southwest, 
and 1987 for the Sierra Nevada.  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Figure 9. From logistic regression, the predicted probability vs. observed fraction of high 
severity fire burned area > 200 hectare for a) Western US b) Northern Rocky Mountains 
c) Southwest d) Sierra Nevada Mountains


